Abstract
In this paper, the self-assembling characteristics of a series of L-glutamate-based ammonium amphiphiles are studied in ionic liquids (ILs). These cationic amphiphiles are dispersible in imidazolium ILs with bis((trifluoromethyl)sulfonyl)amide (TFSA) anion. Amphiphiles-containing didodecyl ester or short dioctyl amide groups were molecularly dispersed in conventional 1-butyl-3-methylimidazolium TFSA, whereas they formed bilayer membranes when they were dispersed in polar, ether linkage-introduced IL. Thus, the modification of ILs exerts a crucial influence on amphiphilic self-assembly. Enhancement of the intermolecular interactions of L-glutamate amphiphiles is achieved by introducing multiple amide bonds and longer alkyl chains, which leads to better self-assembling properties. These amide-enriched amphiphiles form fibrous bilayer assemblies even in conventional ILs with low cohesive energy densities. These observations confirm that the formation of bilayer membranes in ILs is a general phenomenon when the solute molecules have the appropriate ‘ionophilic/ionophobic’ nature.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Parvulescu, V. I. & Hardacre, C. Catalysis in ionic liquids. Chem. Rev. 107, 2615–2665 (2007).
Han, X. & Armstrong, D. W. Ionic liquids in separations. Accounts Chem. Res. 40, 1079–1086 (2007).
MacFarlane, D. R., Pringle, J. M., Howlett, P. C. & Forsyth, M. Ionic liquids and reactions at the electrochemical interface. Phys. Chem. Chem. Phys. 12, 1659–1669 (2010).
Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).
Seddon, K. R., Stark, A. & Torres, M. J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000).
Nakashima, T. & Kimizuka, N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. J. Am. Chem. Soc. 125, 6386–6387 (2003).
Antonietti, M., Kuang, D. B., Smarsly, B. & Yong, Z. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem.Int. Edit 43, 4988–4992 (2004).
Ma, Z., Yu, J. H. & Dai, S. Preparation of Inorganic Materials Using Ionic Liquids. Adv. Mater. 22, 261–285 (2010).
Torimoto, T., Tsuda, T., Okazaki, K. & Kuwabata, S. New frontiers in materials science opened by ionic liquids. Adv. Mater. 22, 1196–1221 (2010).
Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, N., Ishii, N. & Aida, T. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300, 2072–2074 (2003).
Ji, Q. M., Honma, I., Paek, S. M., Akada, M., Hill, J. P., Vinu, A. & Ariga, K. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem.Int. Ed 49, 9737–9739 (2010).
Hao, J. C. & Zemb, T. Self-assembled structures and chemical reactions in room-temperature ionic liquids. Curr. Opin. Colloid Interface Sci. 12, 129–137 (2007).
Greaves, T. L. & Drummond, C. J. Ionic liquids as amphiphile self-assembly media. Chem. Soc. Rev. 37, 1709–1726 (2008).
Nakashima, T., Zhu, J., Qin, M., Ho, S.-S. & Kotov, N. A. Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions. Nanoscale 2, 2084–2090 (2010).
Nakashima, T. & Kimizuka, N. Water/ionic liquid interfaces as fluid scaffolds for the two-dimensional self-assembly of charged nanospheres. Langmuir 27, 1281–1285 (2011).
Kunitake, T. Synthetic bilayer-membranes—molecular design, self-organization, and application. Angew. Chem.Int. Edit. Engl. 31, 709–726 (1992).
Ariga, K., Hill, J. P., Lee, M. V., Vinu, A., Charvet, R. & Acharya, S. Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater. 9, 014109 (2008).
Kimizuka, N., Wakiyama, T., Miyauchi, H., Yoshimi, T., Tokuhiro, M. & Kunitake, T. Formation of stable bilayer membranes in binary aqueous-organic media from a dialkyl amphiphile with a highly dipolar head group. J. Am. Chem. Soc. 118, 5808–5809 (1996).
Kimizuka, N., Tokuhiro, M., Miyauchi, H., Wakiyama, T. & Kunitake, T. Bilayer formation in ethanol from dialkylammonium amphiphile appended with nitroaniline moiety. Chem. Lett. 1049–1050 (1997).
Ishikawa, Y., Kuwahara, H. & Kunitake, T. Self-assembly of bilayers from double-chain fluorocarbon amphiphiles in aprotic organic-solvents—thermodynamic origin and generalization of the bilayer assembly. J. Am. Chem. Soc. 116, 5579–5591 (1994).
Kimizuka, N., Kawasaki, T., Hirata, K. & Kunitake, T. Tube-like nanostructures composed of networks of complementary hydrogen-bonds. J. Am. Chem. Soc. 117, 6360–6361 (1995).
Kimizuka, N., Kawasaki, T., Hirata, K. & Kunitake, T. Supramolecular membranes. spontaneous assembly of aqueous bilayer membranes via formation of hydrogen bonded pairs of melamine and cyanuric acid derivatives. J. Am. Chem. Soc. 120, 4094–4104 (1998).
Kimizuka, N. & Nakashima, T. Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels. Langmuir 17, 6759–6761 (2001).
Nakashima, T. & Kimizuka, N. Vesicles in salt: formation of bilayer membranes from dialkyldimethylammonium bromides in ether-containing ionic liquids. Chem. Lett. 1018–1019 (2002).
Swatloski, R. P., Spear, S. K., Holvrey, J. D. & Rogers, R. D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124, 4974 (2002).
Kunitake, T. & Okahata, Y. Totally synthetic bilayer membrane. J. Am. Chem. Soc. 99, 3860–3861 (1977).
Ikeda, A., Sonoda, K., Ayabe, M., Tamaru, S., Nakashima, T., Kimizuka, N. & Shinkai, S. Gelation of ionic liquids with a low molecular-weight gelator showing T-gel above 100°C. Chem. Lett. 1154–1155 (2001).
Hanabusa, K., Fukui, H., Suzuki, M. & Shirai, H. Specialist gelator for ionic liquids. Langmuir 21, 10383–10390 (2005).
Tu, T., Bao, X. L., Assenmacher, W., Peterlik, H., Daniels, J. & Dotz, K. H. Efficient air-stable organometallic low-molecular-mass gelators for ionic liquids: synthesis, aggregation and application of pyridine-bridged bis(benzimidazolylidene)-palladium complexes. Chem.Eur. J. 15, 1853–1861 (2009).
Dutta, S., Das, D., Dasgupta, A. & Das, P. K. Amino acid based low-molecular-weight ionogels as efficient dye-adsorbing agents and templates for the synthesis of TiO2 nanoparticles. Chem.Eur. J. 16, 1493–1505 (2010).
Yoshida, M., Kouimura, N., Misawa, Y., Tamaoki, N., Matsumoto, H., Kawanami, H., Kazaoui, S. & Minami, N Oligomeric electrolyte as a multifunctional gelator. J. Am. Chem. Soc. 129, 11039–11041 (2007).
Hao, J. C., Song, A., Wang, J., Chen, X., Zhuang, W., Shi, F., Zhou, F. & Liu, W. Self-assembled structure in room-temperature ionic liquids. Chem.Eur. J. 11, 3936–3940 (2005).
Tang, J., Li, D., Sun, C.Y., Zheng, L.Z. & Li, J.H. Temperature dependant self-assembly of surfactant Brij 76 in room temperature ionic liquid. Colloid Surf. A Physicochem. Eng. Asp. 273, 24–28 (2006).
He, Y. Y., Li, Z. B., Simone, P. & Lodge, T. P. Self-assembly of block copolymer micelles in an ionic liquid. J. Am. Chem. Soc. 128, 2745–2750 (2006).
Lopes, J. & Padua, A. A. H. Nanostructural organization in ionic liquids. J. Phys. Chem. B. 110, 3330–3335 (2006).
Fumino, K., Wulf, A. & Ludwig, R. Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew. Chem.Int. Edit. 47, 8731–8734 (2008).
Bonhote, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K. & Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996).
Nakashima, T. & Kimizuka, N. Light-harvesting supramolecular hydrogels assembled from short-legged cationic L-glutamate derivatives and anionic fluorophores. Adv. Mater. 14, 1113–1116 (2002).
Kimizuka, N., Shimizu, M., Fujikawa, S., Fujimura, K., Sano, M. & Kunitake, T. AFM observation of organogel nanostructures on graphite in the gel-assisted transfer technique. Chem. Lett. 967–968 (1998).
Fei, Z. F., Ang, W. H., Zhao, D. B., Scopelliti, R., Zvereva, E. E., Katsyuba, S. A. & Dyson, P. J. Revisiting ether-derivatized imidazolium-based ionic liquids. J. Phys. Chem. B. 111, 10095–10108 (2007).
Kimizuka, N., Takasaki, T. & Kunitake, T. Polymorphism in bilayer-membranes of novel double-chain ammonium amphiphiles. Chem. Lett. 1911–1914 (1988).
Acknowledgements
This work is in part supported by the JST CREST. The authors are grateful to Professor M Goto (Kyushu University) for the use of the CA-07 Moisturemeter.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Nakashima, T., Kimizuka, N. Controlled self-assembly of amphiphiles in ionic liquids and the formation of ionogels by molecular tuning of cohesive energies. Polym J 44, 665–671 (2012). https://doi.org/10.1038/pj.2012.73
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.73
Keywords
This article is cited by
-
Preparation of fusion materials based on ionic liquids and cationic gold nanoparticles
Polymer Journal (2015)