Abstract
Japanese lacquer, known as urushi, is a traditional natural resin used for numerous applications, including tableware, art and furniture. The main component of urushi is urushiol, which is a catechol derivative with a long unsaturated hydrocarbon side chain. Utilizing the characteristics of urushiol as a thermoset, we have demonstrated the surface texturing of an urushi thin film with a thermal imprinting technique. Thermal imprinting was conducted at 100 °C for 10 min by pressing a patterned mold onto the film, and an indented surface that replicated the surface of the mold was obtained. The static water contact angle was changed from 70±0.5° to 112±3° after the fabrication of pillared patterns on the surface. Moreover, the imprinted line and space patterns caused strong anisotropic wetting depending on the direction. Our results demonstrate that the texturing of urushi thin films is a useful technique for controlling the wettability of natural thermoset urushi thin films.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Majima, R. The main element of Japans – urushiol and urushiol dimethyl ether. Ber. Dtsch. Chem. Ges. 42B, 1418–1423 (1909).
Tyman, J. H. P. & Matthews, A. J. Long-chain phenols. J. Chromatogr. 235, 149–164 (1982).
Yamauchi., Y., Oshima, R. & Kumanotani, J. Configuration of the olefinic bonds in the heteroolefinic side-chains of Japanese lacquer urushiol. J. Chromatogr. 243, 71–84 (1982).
Bartus, J., Simonsick, W. J. Jr, Garner, C., Nishiura, T., Kitayama, T., Hatada, K. & Vogl, O. Oriental lacquer III. Composition of the urushiol fraction of the sap of Rhus verniciflua. Polymer J. 26, 67–78 (1994).
Kumanotani, J. Urushi (oriental lacquer) – a matira; aesthetic durable and future-promising coating. Progress Organic Coatings 26, 163–195 (1995).
Kobayashi, S., Uyama, H. & Ikeda, R. Artificial urushi. Chem. Eur. J. 7, 4754–4760 (2001).
Crisp, D. J., Walker, G., Young, G. A. & Yule, A. B. Adhesion and substrate choice in Mussels and Barnacles. Journal of Col. Inter. Sci. 104, 40–50 (1985).
Waite, J. H. & Tanzer, M. L. Polyphenolic substance of Mytilus edulis: Novel adhesive containing L-dopa and hydroxyproline. Science 212, 1038–1040 (1981).
Dalsin, J. L., Hu, B.-H., Lee, B. P. & Messersmith, P. B. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J. Am. Chem. Soc. 125, 4253–4258 (2003).
Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl Acad. Sci. USA 103, 12999–13003 (2006).
Ikeda, R., Tanaka, H., Uyama, H. & Kobayashi, S. A new crosslinkable polyphenol from a renewable resource. Macromol. Rapid. Commun. 21, 496–499 (2000).
Watanabe, H., Fujimoto, A. & Takahara, A. Characterization of catechol containing natural thermosetting polymer "urushiol" thin film. J. Polym. Sci., Part A: Polym. Chem. 51, 3688–3692 (2013).
Kondo, M., Yasuda, H. & Kubodera, K. Japan Patent 990140 [in Japanese] (1974).
Chou, S. Y., Krauss, P. R. & Renstrom, P. Imprint of sub-25 nm vias and trenches in polymers. J. Appl. Phys. Lett. 67, 3114–3116 (1995).
Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint of sub-25 nm vias and trenches in polymers. Science 272, 85–87 (1996).
Honda, K., Morita, M., Masunaga, H., Sasaki, S., Takata, M. & Takahara, A. Room-temperature nanoimprint lithography for crystalline poly(fluoroalkyl acrylate) thin films. Soft Matter. 6, 870–875 (2010).
Watanabe, H., Fujimoto, A. & Takahara, A. Manipulation of surface properties: the use of nanomembrane as a nanometer-thick decal. Soft Matter. 7, 1856–1860 (2011).
Fujimori, S. Fine pattern fabrication by the molded mask method (nanoimprint lithography) in the 1970s. Jpn J. Appl. Phys. 48 06FH01-1 (2009).
Barthlott, W. & Neinhuis, C Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).
Sun, T., Feng, L., Gao, X. & Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 38, 644–652 (2005).
Roach, P., Shirtcliffe, N. J. & Newton, M. I. Progess in superhydrophobic surface development. Soft Matter. 4, 224–240 (2008).
Lee., H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).
Oliver, J. F., Hush, C. & Mason, S. G. Resistance to spreading of liquids by sharp edges. J. Colloid Interface Sci. 59, 568–581 (1977).
Xia, D. & Brueck, S. R. J. Strongly anisotropic wetting on one-dimensional nanopatterned surfaces. Nano Lett. 8, 2819–2824 (2008).
Fan, X., Lin, L., Dalsin, J. L. & Messersmith, P. B. Biomimetic anchor for surface-initiated polymerization from metal substrates. J. Am. Chem. Soc. 127, 15843–15847 (2005).
Zhu, B. & Edmondson, S. Polydopamine-melanin initiators for surface-initiated ATRP. Polymer 52, 2141–2149 (2011).
Wei, Q., Wang, X. & Zhou, F. A versatile macro-initiator with dual functional anchoring groups for surface-initiated atom transfer radical polymerization on various substrates. Poly. Chem. 3, 2129–2137 (2012).
Kohri, M., Kohma, H., Shinoda, Y., Yamauchi, M., Yagai, S., Kojima, T., Taniguchi, T. & Kishikawa, K. A colorless functional polydopamine thin layer as a basis for polymer capsules. Polym. Chem. 4, 2696–2702 (2013).
Acknowledgements
The authors thank Prof. H. Jinnai and Dr J. Nishida (both of Kyushu University) for helpful discussions.
Author contributions
H. Watanabe and A. Takahara contributed equally to this work.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Watanabe, H., Fujimoto, A. & Takahara, A. Surface texturing of natural ‘urushi’ thermosetting polymer thin films. Polym J 46, 216–219 (2014). https://doi.org/10.1038/pj.2013.91
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2013.91


