Abstract
We developed a simple and versatile method for the visualization of swollen microgels using standard scanning electron microscopy (SEM) that does not require the conventional sample pretreatment steps of sputtering. Specifically, microgels were swollen using ionic liquids (ILs), which remained nonvolatile even under high vacuum conditions. Two types of widely studied stimuli-responsive microgels and their hybrids with Au nanoparticles were visualized via SEM to demonstrate the versatility of the method. In particular, we observed the dispersion of embedded Au nanoparticles within the microgels because of the swelling caused by the ILs, confirming that the approach is versatile and useful for the evaluation of nanocomposite materials, such as hybrid microgels.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Lyon, L. A. & Fernandez-Nieves, A. The polymer/colloid duality of microgel suspensions. Annu. Rev. Phys. Chem. 63, 25–43 (2012).
Saunders, B. R. & Vincent, B. Microgel particles as model colloids: theory, properties and applications. Adv. Colloid Interface Sci. 80, 1–25 (1999).
Pelton, R. H. & Chibante, P. Preparation of aqueous latices with N-Isopropylacrylamide. Colloids Surf. 20, 247–256 (1986).
Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci. 85, 1–33 (2000).
Ma, G. H. & Fukutomi, T. Studies on the preparation and characterization of poly(4-vinylpyridine) microgel. I. preparation with polymer emulsifier. J. Appl. Polym. Sci. 43, 1451–1457 (1991).
Hsiue, G. H., Hsu, S. H., Yang, C. C., Lee, S. H. & Yang, I. K. Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide. Biomaterials 23, 457–462 (2002).
Nayak, S., Lee, H., Chmielewski, J. & Lyon, L. A. Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J. Am. Chem. Soc. 126, 10258–10259 (2004).
Smeets, N. M. B. & Hoare, T. Designing responsive microgels for drug delivery applications. J. Polym. Sci. A: Polym. Chem. 51, 3027–3043 (2013).
Kawaguchi, H., Fujimoto, K. & Mizuhara, Y. Hydrogel microspheres III. temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid Polym. Sci. 270, 53–57 (1992).
Parasuraman, D., Sarker, A. K. & Serpe, M. J. Recyclability of poly (N-isopropylacrylamide) microgel-based assemblies for organic dye removal from water. Colloid Polym. Sci. 291, 1795–1802 (2013).
Wiese, S., Spiess, A. C. & Richtering, W. Microgel-stabilized smart emulsions for biocatalysis. Angew. Chem. Int. Ed. 52, 576–579 (2013).
Reese, C. E., Mikhonin, A. V., Kamenjicki, M., Tikhonov, A. & Asher, S. A. Nanogel nanosecond photonic crystal optical switching. J. Am. Chem. Soc. 126, 1493–1496 (2004).
Weissman, J. M., Sunkara, H. B., Tse, A. S. & Asher, S. A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959–960 (1996).
Suzuki, D. & Kawaguchi, H. Stimuli-sensitive core/shell template particles for immobilizing inorganic nanoparticles in the core. Colloid Polym. Sci. 284, 1443–1451 (2006).
Suzuki, D. & Kawaguchi, H. Hybrid microgels with reversibly changeable multiple brilliant color. Langmuir 22, 3818–3822 (2006).
Cohin, Y, Fisson, M, Jourde, K, Fuller, G. G, Sanson, N, Talini, L & Monteux, C. Tracking the interfacial dynamics of PNiPAM soft microgels particles adsorbed at the air–water interface and in thin liquid films. Rheol. Acta 52, 445–454 (2013).
Jeenanong, A. & Kawaguchi, H. Effect of pH and temperature on the behavior of microgel in SPR sensor. Colloids Surf. A 315, 232–240 (2008).
Crowther, H. M. & Vincent, B. Swelling behavior of poly-N-isopropylacrylamide microgel particles in alcoholic solutions. Colloid Polym. Sci. 276, 46–51 (1998).
Ueki, T. & Watanabe, M. Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41, 3739–3749 (2008).
Torimoto, T., Tsuda, T., Okazaki, K. & Kuwabata, S. New frontiers in materials science opened by ionic liquids. Adv. Mater. 21, 1–26 (2009).
Plechkova, N. V. & Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008).
Minami, H., Yoshida, K. & Okubo, M. Preparation of polystyrene particles by dispersion polymerization in an ionic liquid. Macromol. Rapid Commun. 29, 567–572 (2008).
Minami, H., Kimura, A., Kinoshita, K. & Okubo, M. Preparation of poly(acrylic acid) particles by dispersion polymerization in an ionic liquid. Langmuir 26, 6303–6307 (2010).
Ueki, T. & Watanabe, M. Polymers in ionic liquids: Dawn of neoteric solvents and innovative materials. Bull. Chem. Soc. Jpn. 85, 33–50 (2012).
Kuwabata, S., Kongkanand, A., Oyamatsu, D. & Torimoto, T. Observation of ionic liquid by scanning electron microscope. Chem. Lett. 35, 600–601 (2006).
Noda, A., Susan, M. A. B. H., Kudo, K., Mitsushima, S., Hayamizu, K. & Watanabe, M. Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B 107, 4024–4033 (2003).
Dupin, D., Fujii, S. & Armes, S. P. Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization. Langmuir 22, 3381–3387 (2006).
Wishart, J. F. & Neta, P. Spectrum and reactivity of the solvated electron in the ionic liquid methyltributylammonium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. B 107, 7261 (2003).
Kuwabata, S., Torimoto, T. & Nakasawa, H. Availability of ionic liquid for electron microscopy. Kenbikyo 44, 61–64 (2009).
Torimoto, T., Okazaki, K., Kiyama, T., Hirahara, K., Tanaka, N. & Kuwabata, S. Sputter deposition onto ionic liquid: simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett. 89, 243117 (2006).
Nakamoto, H. & Watanabe, M. Brønsted acid–base ionic liquids for fuel cell electrolytes. Chem. Commun. 24, 2539–2541 (2007).
Debeljuh, N. J., Sutti, A., Barrow, C. J. & Byrne, N. Phase transition of poly(N-isopropylacrylamide) in aqueous protic ionic liquids: kosmotropic versus chaotropic anions and their interaction with water. J. Phys. Chem. B 117, 8430–8435 (2013).
Geisel, K., Isa, L. & Richtering, W. Unraveling the 3D localization and deformation of responsive microgels at oil/water interfaces: a step forward in understanding soft emulsion stabilizers. Langmuir 28, 15770–155776 (2012).
Crassous, J. J., Rochette, C. N., Wittemann, A., Schrinner, M., Ballauff, M. & Drechsler, M. Quantitative analysis of polymer colloids by cryo-transmission electron microscopy. Langmuir 25, 7862–7871 (2009).
Fujii, S., Armes, S. P., Araki, T. & Ade, H. Direct imaging and spectroscopic characterization of stimulus-responsive microgels. J. Am. Chem. Soc. 127, 16808–16809 (2005).
Fujii, S., Dupin, D., Araki, T., Armes, S. P. & Ade, H. First direct imaging of electrolyte-induced deswelling behavior of pH-responsive microgels in aqueous media using scanning transmission x-ray microscopy. Langmuir 25, 2588–2592 (2009).
Acknowledgements
DS acknowledges Grant-in-Aids for (1) Challenging Exploratory Research (26620177) and (2) Scientific Research on Innovative Areas (26102517) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. KH acknowledges the Research Fellowships of the Japan Society for the Promotion of Science for young Scientists. Moreover, the authors thank Yasuhisa Nagase for his help in preparing the hybrid microgels and TEM observations.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Horigome, K., Ueki, T. & Suzuki, D. Direct visualization of swollen microgels by scanning electron microscopy using ionic liquids. Polym J 48, 273–279 (2016). https://doi.org/10.1038/pj.2015.103
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2015.103