Abstract
A number of amphiphilic N-isopropylacrylamide (NIPAAm) oligomers and polymers with a S-1-dodecyl-S′-trithiocarbonate (DTC) and an amino terminal group were prepared using RAFT polymerization: DTC-NIPAAm13-NH3Cl (1), DTC-NIPAAm61-NH3Cl (2), DTC-NIPAAm78-NH3Cl (3), DTC-NIPAAm119-NH3Cl (4). and DTC-NIPAAm274-NH3Cl (5). Aqueous solutions of 1–5 became cloudy upon heating at pH 10, while 1–4 did not exhibit thermosensitivity at pH 7.0, instead forming stable rods and vesicles in aqueous solution. Nanorods and nanosquares were obtained from metal cyanide complexes of 1 and 2, both of which had low degrees of polymerization, and aqueous solutions of these nanocomposites became cloudy at pH 7.0. The electrostatic interactions between the amine segments and the anionic metal cyanide complexes as well as the low degree of polymerization in the vicinity of approximately 100 were both found to have a significant role in the morphology and thermoresponsiveness of the hybrids. These hybrid NIPAAm oligomer/metal cyanide complexes may allow the design of flexible, functional supramolecular systems in aqueous solutions.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Gómez-Romero, P. & Sanchez, C. Functional Hybrid Materials (eds Gómez-Romero P. & Sanchez, C.) (Wiley-VCH: Weinheim, Germany, 2004)
Hirai, H., Chawanya, H. & Toshima, N. Colloidal palladium protected with poly(N-vinyl-2-pyrrolidinone) for selective hydrogenation of cyclopentadiene. React. Polym. Ion Exchangers Sorbents 3, 127–141 (1985).
Hirai, H., Nakao, Y. & Toshima, N. Colloidal rhodium in poly(vinylpyrrolidone) as hydrogenation catalyst for internal olefins. Chem. Lett. 7, 545–548 (1978).
Chujo, Y. & Saegusa, T. Organic polymer hybrids with silica gel formed by means of the sol-gel method. Adv. Polym. Sci. 100, 11–29 (1992).
Chujo, Y., Ihara, E., Kure, S., Suzuki, K. & Saegusa, T. Block copolymer of 2-methyl-2-oxazoline with silica gel. An organic-inorganic hybrid polymer. Makromol. Chem. Macromol. Symp. 42/43, 303–312 (1991).
Kim, S. & Bawendi, M. G. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125, 14652–14653 (2003).
Gangopadhyay, R. & De, A. Conducting polymer nanocomposites: a brief overview. Chem. Mater. 12, 608–622 (2000).
Thakur, V. K., Ding, G., Ma, J., Lee, P. S. & Lu, X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24, 4071–4096 (2012).
Gómez-Romero, P. Hybrid organic-inorganic materials-in search of synergic activity. Adv. Mater. 13, 163–174 (2001).
Walcarius, A. Electrochemical applications of silica-based organic-inorganic hybrid materials. Chem. Mater. 13, 3351–3372 (2001).
Gómez-Romero, P., Cuentas-gallegos, K., Lira-cantú, M. & Casaň-pastor, N. Hybrid nanocomposite materials for energy storage and conversion applications. J. Mater. Sci. 40, 1423–1428 (2002).
Zhou, R. & Xue, J. Hybrid polymer-nanocrystal materials for photovoltaic applications. Chem. Phys. Chem. 13, 2471–2480 (2012).
Holder, E., Tessler, N. & Rogach, A. L. Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. J. Mater. Chem. 18, 1064–1078 (2008).
Sessolo, M. & Bolink, H. J. Hybrid organic-inorganic light-emitting diodes. Adv. Mater. 23, 1829–1845 (2011).
Jäekle, L. Advances in the synthesis of organoborane polymers for optical, electronic, and sensory applications. Chem. Rev. 110, 3985–4022 (2010).
Zhao, L. & Lin, Z. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Adv. Mater. 24, 4353–4368 (2012).
Watanabe, H., Vendamme, R. & Kunitake, T. Development of fabrication of giant nanomembranes. Bull. Chem. Soc. Jpn 80, 433–440 (2007).
Watanabe, H. & Kunitake, T. A large, freestanding, 20 nm thick nanomembrane based on an epoxy resin. Adv. Mater. 19, 909–912 (2007).
Chujo, Y. & Tanaka, K. New polymeric materials based on element-blocks. Bull. Chem. Soc. Jpn 88, 633–643 (2015).
Kuroiwa, K., Yoshida, M., Masaoka, S., Kaneko, K., Sakai, K. & Kimizuka, N. Self-assembly of tubular microstructures from mixed-valence metal complexes and their reversible transformation by external stimuli. Angew Chem. Int. Ed. 51, 656–659 (2012).
Kuroiwa, K. Dynamic self-assembly from mixed-valence metal complexes and their reversible transformations by external stimuli. Kobunshi Ronbunshu 69, 485–492 (2012).
Kuroiwa, K. & Kimizuka, N. Self-assembly and functionalization of lipophilic metal-triazole complexes in various media. Polym. J. 45, 384–390 (2013).
Kuroiwa, K., Arie, T., Sakurai, S., Hayami, S. & Deming, T. J. Supramolecular control of reverse spin transitions in cobalt(II) terpyridine complexes with diblock copolypeptide amphiphiles. J. Mater. Chem. C 3, 7779–7783 (2015).
Kuroiwa, K., Masaki, Y., Koga, Y. & Deming, T. J. Self-assembly of discrete metal complexes in aqueous solution via block copolypeptide amphiphiles. Int. J. Mol. Sci. 14, 2022–2035 (2013).
Kuroiwa, K., Higuma, C., Shimogawa, Y., Hachisako, H. & Sakurai, S. Development of amphiphilic n-isopropylacrylamide oligomers and polymers, and their composites with metal ions. Kobunshi Ronbunshu 71, 457–466 (2014).
Heskins, M., Guillet, J. E. & James, E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Chem. 2, 1441–1455 (1968).
Schild, H. G. Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 17, 163–249 (1992).
Smithenry, D. W., Kang, M.-S. & Gupta, V. K. Telechelic poly(N-isopropylacrylamide): polymerization and chain aggregation in solution. Macromolecules 34, 8503–8511 (2001).
Kujawa, P., Watanabe, H., Tanaka, F. & Winnik, F. M. Amphiphilic telechelic poly(N-isopropylacrylamide) in water: from micelles to gels. Eur. Phys. J. E: Soft Matter 17, 129–137 (2005).
Kujawa, P., Segui, F., Shaban, S., Diab, C., Okada, Y., Tanaka, F. & Winnik, F. M. Impact of end-group association and main-chain hydration on the thermosensitive properties of hydrophobically modified telechelic poly(N-isopropylacrylamides) in water. Macromolecules 39, 341–348 (2006).
Plummer, R., Hill, D. J. T. & Whittaker, A. K. Solution properties of star and linear poly(N-isopropylacrylamide). Macromolecules 39, 8379–8388 (2006).
Housni, A. & Narain, R. Aqueous solution behavior of P(N-isopropyl acrylamide) in the presence of water-soluble macromolecular species. Eur. Polym. J. 43, 4344–4354 (2007).
Yusa, S.-i., Yamago, S., Sugahara, M., Morikawa, S., Yamamoto, T. & Morishima, Y. Thermo-responsive diblock copolymers of poly(N-isopropylacrylamide) and poly(N-vinyl-2-pyrroridone) synthesized via organotellurium-mediated controlled radical polymerization (TERP). Macromolecules 40, 5907–5915 (2007).
Shan, J., Zhao, Y., Granqvist, N. & Tenhu, H. Thermoresponsive properties of N-isopropylacrylamide oligomer brushes grafted to gold nanoparticles: effects of molar mass and gold core size. Macromolecules 42, 2696–2701 (2009).
Nagai, A., Yoshii, R., Otsuka, T., Kokado, K. & Chujo, Y. BODIPY-based chain transfer agent: reversibly thermoswitchable luminescent gold nanoparticle stabilized by BODIPY-terminated water-soluble polymer. Langmuir 26, 15644–15649 (2010).
Smith, A. E., Xu, X., Savin, D. A. & McCormick, C. L. Reversible gold "locked" synthetic vesicles derived from stimuli-responsive diblock copolymers. Polym. Chem. 1, 628–630 (2010).
Lian, X., Jin, J., Tian, J. & Zhao, H. Thermoresponsive nanohydrogels cross-linked by gold nanoparticles. ACS Appl. Mater. Interfaces 2, 2261–2268 (2010).
Liang, M., Lin, I.-C., Whittaker, M. R., Minchin, R. F., Monteiro, M. J. & Toth, I. Cellular uptake of densely packed polymer coatings on gold nanoparticles. ACS Nano 4, 403–413 (2010).
Liu, Y., Tu, W. & Cao, D. Synthesis of gold nanoparticles coated with polystyrene-block-poly(N-isopropylacrylamide) and their thermoresponsive ultraviolet-visible absorbance. Ind. Eng. Chem. Res. 49, 2707–2715 (2010).
Sistach, S., Beija, M., Rahal, V., Brulet, A., Marty, J.-D., Destarac, M. & Mingotaud, C. Thermoresponsive amphiphilic diblock copolymers synthesized by MADIX/RAFT: properties in aqueous solutions and use for the preparation and stabilization of gold nanoparticles. Chem. Mater. 22, 3712–3724 (2010).
Ebeling, B. & Vana, P. RAFT-polymers with single and multiple trithiocarbonate groups as uniform gold-nanoparticle coatings. Macromolecules 46, 4862–4871 (2013).
Li, W., Cai, X., Kim, C., Sun, G., Zhang, Y., Deng, R., Yang, M., Chen, J., Achilefu, S., Wang, L. V. & Xia, Y. Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale 3, 1724–1730 (2011).
Sun, X.-L., He, W.-D., Li, J., He, N., Han, S.-C. & Li, L.-Y. Preparation of polypyrrole-graft-poly(N-isopropylacrylamide)/silver nanocomposites from pyrrolyl-capped macromonomer by AgNO3 and their stimuli responsibility of light emission. J. Polym. Sci. A Polym. Chem. 46, 6950–6960 (2008).
Li, Q., Zhang, L., Bai, L., Zhang, Z., Zhu, J., Zhou, N., Cheng, Z. & Zhu, X. Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization. Soft Matter 7, 6958–6966 (2011).
Wu, X., He, X., Zhong, L., Lin, S., Wang, D., Zhu, X. & Yan, D. Water-soluble dendritic-linear triblock copolymer-modified magnetic nanoparticles: preparation, characterization and drug release properties. J. Mater. Chem. 21, 13611–13620 (2011).
Wang, H., Luo, W. & Chen, J. Fabrication and characterization of thermoresponsive Fe3O4@PNIPAM hybrid nanomaterials by surface-initiated RAFT polymerization. J. Mater. Sci. 47, 5918–5925 (2012).
Budgin, A. M., Kabachii, Y. A., Shifrina, Z. B., Valetsky, P. M., Kochev, S. S., Stein, B. D., Malyutin, A. & Bronstein, L. M. Functionalization of magnetic nanoparticles with amphiphilic block copolymers: self-assembled thermoresponsive submicrometer particles. Langmuir 28, 4142–4151 (2012).
You, Y.-Z., Kalebaila, K. K., Brock, S. L. & Oupický, D. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem. Mater. 20, 3354–3359 (2008).
Chen, J., Liu, M., Chen, C., Gong, H. & Gao, C. Synthesis and characterization of silica nanoparticles with well-defined thermoresponsive PNIPAM via a combination of RAFT and click chemistry. ACS Appl. Mater. Interfaces 3, 3215–3223 (2011).
Xu, L., Pan, J., Xia, Q., Shi, F., Dai, J. i., Wei, X. & Yan, Y. Composites of silica and molecularly imprinted polymers for degradation of sulfadiazine. J. Phys. Chem. C 116, 25309–25318 (2012).
Masuda, T., Yamamoto, S.-i., Moriya, O., Kashio, M. & Sugizaki, T. Preparation of amphiphilic polysilsesquioxane by grafting of block copolymer of acrylamide monomers. Polym. J. 39, 220–229 (2007).
Zhang, W., Liu, L., Zhuang, X., Li, X., Bai, J. & Chen, Y. Synthesis and self-assembly of tadpole-shaped organic/inorganic hybrid poly(N-isopropylacrylamide) containing polyhedral oligomeric silsesquioxane via RAFT polymerization. J. Polym. Sci. A: Polym. Chem. 46, 7049–7061 (2008).
Wang, L., Zeng, K. & Zheng, S. Hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(N-isopropylacrylamide) telechelics: synthesis and behavior of physical hydrogels. ACS Appl. Mater. Interfaces 3, 898–909 (2011).
Zhang, W., Wang, S., Li, X., Yuan, J. & Wang, S. Organic/inorganic hybrid star-shaped block copolymers of poly(l-lactide) and poly(N-isopropylacrylamide) with a polyhedral oligomeric silsesquioxane core: synthesis and self-assembly. Eur. Polym. J. 48, 720–729 (2012).
Lehto, J., Vaaramaa, K., Vesterinen, E. & Tenhu, H. Uptake of zinc, nickel, and chromium by N-isopropyl acrylamide polymer gels. J. Appl. Polym. Sci. 68, 355–362 (1998).
Zhang, L.-J., Cao, L.-Q., Wang, X.-H. & Wang, J.-D. Preparation of the thermosensitive metal ion imprinted polymer in supercritical carbon dioxide: application in the selective recognition of copper (II). Polym. Adv. Technol. 23, 1174–1180 (2012).
Irie, M., Misumi, Y. & Tanaka, T. Stimuli-responsive polymers: chemical induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide) with pendent crown ether groups. Polymer 34, 4531–4535 (1993).
Kuckling, D. & Pareek, P. Synthesis of transition-metal-ion-selective poly(N-isopropylacrylamide) hydrogels by the incorporation of an aza crown ether. J. Polym. Sci. A Polym. Chem. 41, 1594–1602 (2003).
Chayama, K., Morita, Y. & Iwatsuki, S. Thermosensitive gels incorporating polythioether units for the selective extraction of class B metal ions. J. Chromatogr. A 1217, 6785–6790 (2010).
Liu, T., Hu, J., Yin, J., Zhang, Y., Li, C. & Liu, S. Enhancing detection sensitivity of responsive microgel-based Cu(II) chemosensors via thermo-induced volume phase transitions. Chem. Mater. 21, 3439–3446 (2009).
Chiper, M., Fournier, D., Hoogenboom, R. & Schubert, U. S. Thermosensitive and switchable terpyridine-functionalized metallo-supramolecular poly(N-isopropylacrylamide). Macromol. Rapid Commun. 29, 1640–1647 (2008).
Qin, L., He, X.-W., Zhang, W., Li, W.-Y. & Zhang, Y.-K. Macroporous thermosensitive imprinted hydrogel for recognition of protein by metal coordinate interaction. Anal. Chem. 81, 7206–7216 (2009).
Alexandridis, P. & Lindman, B. Amphiphilic Block Copolymers. Self-Assembly and Applications (eds Alexandridis, P. & Lindman, B.) (Elsevier, Amsterdam, The Netherlands, 2000)
Nagarajan, R. Amphiphiles Molecular Assembly and Applications (ed Nagarajan, R.) (Oxford Univ. Press, Oxford, UK, 2012)
Tien, N.-D., Sasaki, S., Masunaga, H., Shimizu, N., Igarashi, N. & Sakurai, S. Small-angle X-ray scattering studies on melting and recrystallization behaviors of poly(oxyethylene) crystallites in poly(D,L-lactide)/poly(oxyethylene) blends. Polymer 55, 2562–2569 (2014).
Lai, J. T., Filla, D. & Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35, 6754–6756 (2002).
Zhang, X., Li, J., Li, W. & Zhang, A. Synthesis and characterization of thermo- and pH-responsive double-hydrophilic diblock copolypeptides. Biomacromolecules 8, 3557–3567 (2007).
Wang, R., McCormick, C. L. & Lowe, A. B. Synthesis and evaluation of new dicarboxylic acid functional trithiocarbonates: RAFT synthesis of telechelic poly(n-butyl acrylate)s. Macromolecules 38, 9518–9525 (2005).
Bouchékif, H. & Narain, R. Reversible addition-fragmentation chain transfer polymerization of N-isopropylacrylamide: a comparison between a conventional and a fast initiator. J. Phys. Chem. B 111, 11120–11126 (2007).
Vega-Rios, A. & Licea-Claveríe, A. Controlled synthesis of block copolymers containing n-isopropylacrylamide by reversible addition-fragmentation chain-transfer (RAFT) polymerization. J. Mex. Chem. Soc. 55, 21–32 (2011).
Xia, Y., Burke, N. A. D. & Stöver, H. D. H. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39, 2275–2283 (2006).
Nuopponen, M., Ojala, J. & Tenhu, H. Aggregation behaviour of well defined amphiphilic diblock copolymers with poly(N-isopropylacrylamide) and hydrophobic blocks. Polymer 45, 3643–3650 (2004).
Corey, R. B. & Pauling, L. Molecular models of amino acids, peptides, and proteins. Rev. Sci. Instrum. 24, 621–627 (1953).
Feil, H., Bae, Y. H., Feijen, J. & Kim, S. W. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26, 2496–2500 (1993).
Park, T. G. & Hoffman, A. S. Sodium chloride-induced phase transition in nonionic poly(N-isopropylacrylamide) gel. Macromolecules 26, 5045–5048 (1993).
Suzuki, A. Phase transition in gels of sub-millimeter size induced by interaction with stimuli. Adv. Polym. Sci. 110, 199–240 (1993).
Rawashdeh-Omary, M. A., Omary, M. A. & Patterson, H. H. Oligomerization of Au(CN)2− and Ag(CN)2− ions in solution via ground-state aurophilic and argentophilic bonding. J. Am. Chem. Soc. 122, 10371–10380 (2000).
Yersin, H. Energy transfer from linear stacks of tetracyanoplatinates(II) to rare earth ions. J. Chem. Phys. 68, 4707–4713 (1978).
Rawashdeh-Omary, M. A., Omary, M. A., Patterson, H. H. & Fackler, J. P. Jr. Excited-state interactions for [Au(CN)2−]n and [Ag(CN)2−]n oligomers in solution. Formation of luminescent gold-gold bonded excimers and exciplexes. J. Am. Chem. Soc. 123, 11237–11247 (2001).
Acknowledgements
This work was financially supported in part by a Grant-in-Aid for Young Scientists (A) (No. 24685019) and a Grant-in-Aid for Scientific Research on Innovative Areas (new polymeric materials based on element blocks, no. 2401) (Nos. 25102547 and 15H00770). SAXS measurements were performed at the Photon Factory of High Energy Accelerator Research Organization (Approval number 2013G507).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Kuroiwa, K., Koga, Y., Ishimaru, Y. et al. Morphological control of hybrid amphiphilic poly(N-isopropylacrylamide)/metal cyanide complexes. Polym J 48, 729–739 (2016). https://doi.org/10.1038/pj.2016.13
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2016.13