Abstract
Fullerenes (C60 or C70) and water-soluble poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPCn) were mixed by physical means to prepare water-soluble fullerene/PMPCn complexes. The ultraviolet-visible absorption spectra confirmed the presence of aqueous solutions with high fullerene concentrations. The fullerene/PMPCn complexes were characterized using light scattering measurements, small-angle X-ray scattering measurements and transmission electron microscopic observations. The complexes generated singlet oxygen upon visible light irradiation.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Jensen, A. W., Wilson, S. R. & Schuster, D. I. Biological applications of fullerenes. Biological applications of fullerenes. Bioorg. Med. Chem. 4, 767–779 (1996).
Nakamura, E. & Isobe, H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 36, 807–815 (2003).
Chinazi, R. F., Sijbesma, R., Srdanov, G., Hill, C. L. & Wudl, F. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene. Antimicrob. Agents Chemother. 37, 1707–1710 (1993).
Sera, N., Tokiwa, H. & Miyata, N. Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 17, 2163–2169 (1996).
Chiang, L. Y., Lu, F. J. & Lin, J. T. Free radical scavenging activity of water-soluble fullerenols. J. Chem. Soc., Chem. Commun. 1283–1284 (1995).
Tabata, Y. & Ikeda, Y. Biological functions of fullerene. Pure Appl. Chem. 71, 2047–2053 (1999).
Yusa, S., Awa, S., Ito, M., Kawase, T., Takada, T., Nakashima, K., Liu, D., Yamago, S. & Morishima, Y. Solubilization of C60 by micellization with a thermoresponsive block copolymer in water: Characterization, singlet oxygen generation, and DNA photocleavage. J. Polym. Sci. A Polym. Chem. 49, 2761–2770 (2011).
Torres, V. M., Posa, M., Srdjenovic, B. & Simplício, A. L. Solubilization of fullerene C60 in micellar solutions of different solubilizers. Colloid Surf. B Biointerfaces 82, 46–53 (2011).
Chiang, L. Y., Wang, L. Y., Swirczewski, J. W., Soled, S. & Cameron, S. Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated Precursors. J. Org. Chem. 59, 3960–3968 (1994).
Scrivens, W. A., Tour, J. M., Creek, K. E. & Pirisi, L. Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytes. J. Am. Chem. Soc. 116, 4517–4518 (1994).
Deguchi, S., Mukai, S., Tsudome, M. & Horikoshi, K. Facile generation of fullerene nanoparticles by hand-grinding. Adv. Mater. 18, 729–732 (2006).
Andersson, T., Nilsson, K., Sundahl, M., Westman, G. & Wennerstrom, O. C60 embedded in γ-cyclodextrin: a water-soluble fullerene. J. Chem. Soc. Chem. Commun. 8, 604–606 (1992).
Komatsu, K., Fujiwara, K., Murata, Y. & Braun, T. Aqueous solubilization of crystalline fullerenes by supramolecular complexation with γ-cyclodextrin and sulfocalix[8]arene under mechanochemical high-speed vibration milling. J. Chem. Soc. Perkin Trans. 1, 2963–2966 (1999).
Wang, H. M. & Wenz, G. Molecular solubilization of fullerene C60 in water by γ-cyclodextrin thioethers. Beilstein J. Org. Chem. 8, 1644–1651 (2012).
Atwood, J. L., Koutsantonis, G. A. & Raston, C. L. Purification of C60 and C70 by selective complexation with calixarenes. Nature 368, 229–231 (1994).
Hungerbühler, H., Guldi, D. M. & Asmus, K. D. Incorporation of C60 into artificial lipid membranes. J. Am. Chem. Soc. 115, 3386–3387 (1993).
Ikeda, A., Sato, T., Kitamura, K., Nishiguchi, K., Sasaki, Y., Kikuchi, J., Ogawa, T., Yogo., K. & Takeya, T. Efficient photocleavage of DNA utilising water-soluble lipid membrane-incorporated [60]fullerenes prepared using a [60]fullerene exchange method. Org. Biomol. Chem. 3, 2907–2909 (2005).
Yamakoshi, Y. N., Yagami, T., Fukuhara, K., Sueyoshi, S. & Miyata, N. Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. Chem. Commun. 4, 517–518 (1994).
Tsuchiya, T., Yamakoshi, Y. & Miyata, N. A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limb bud cell culture system. Biochem. Biophys. Res. Commun. 206, 885–894 (1995).
Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).
Ishihara, K., Ueda, T. & Nakabayashi, N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym. J. 22, 355–360 (1990).
Ohno, S., Hasegawa, S., Liu, H., Ishihara, K. & Yusa, S. Aggregation behavior in water of amphiphilic diblock copolymers bearing biocompatible phosphorylcholine and cholesteryl groups. Polym. J. 47, 71–76 (2015).
Iwasaki, Y., Ijuin, M., Mikami, A., Nakabayashi, N. & Ishihara, K. Behavior of blood cells in contact with water-soluble phospholipid polymer. J. Biomed. Mater. Res. 46, 360–367 (1999).
Mitsukami, Y., Donovan, M. S., Lowe, A. B. & McCormick, C. L. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 34, 2248–2256 (2001).
Lindig, B. A., Rodgers, M. A. J. & Schaap, A. P. Determination of the lifetime of singlet oxygen in D2O using 9,10-anthracenedipropionic acid, a water-soluble probe. J. Am. Chem. Soc. 102, 5590–5593 (1980).
Yokoyma, Y. & Yusa., S. Water-soluble complexes formed from hydrogen bonding interactions between a poly(ethylene glycol)-containing triblock copolymer and poly(methacrylic acid). Polym. J. 45, 985–992 (2013).
Naruse, K., Eguchi, K., Akiba, I., Sakurai, K., Masunaga, H., Ogawa, H. & Fossey, J. S. Flexibility and cross-sectional structure of an anionic dual-surfactant wormlike micelle explored with small-angle X-ray scattering coupled with contrast variation technique. J. Phys. Chem. B 113, 10222–10229 (2009).
Akiba, I., Terada, N., Hashida, S., Sakurai, K., Sato, T., Shiraishi, K., Yokoyama, M., Masunaga, H., Ogawa, H., Ito, K. & Yagi, N. Encapsulation of a hydrophobic drug into a polymer-micelle core explored with synchrotron SAXS. Langmuir 26, 7544–7551 (2010).
Yusa, S., Morihara, M., Nakai, K., Fujii, S., Nakamura, Y., Maruyama, A. & Shimada, N. Thermo-responsive liquid marbles. Polym. J. 46, 145–148 (2014).
Yusa, S., Fukuda, K., Yamamoto, T., Ishihara, K. & Morishima, Y. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules 6, 663–670 (2005).
Quintana, J. R., Jánez, M. D., Villacampa, M. & Katime, I. Diblock copolymer micelles in solvent binary mixtures. 1. Selective solvent/precipitant. Macromolecules 28, 4139–4143 (1995).
Villacampa, M., Apodaca, E. D., Quintana, J. R. & Katime, I. Diblock copolymer micelles in solvent binary mixtures. 2. Selective solvent/good solvent. Macromolecules 28, 4144–4149 (1995).
Huber, K., Bantle, S., Lutz, P. & Burchard, W. Hydrodynamic and thermodynamic behavior of short-chain polystyrene in toluene and cyclohexane at 34.5 °C. Macromolecules 18, 1461–1467 (1985).
Akcasu, A. Z. & Han, C. C. Molecular weight and temperature dependence of polymer dimensions in solution. Macromolecules 12, 276–280 (1979).
Konishi, T., Yoshizaki, T. & Yamakawa, H. On the "Universal Constants" ρ and Φ of flexible polymers. Macromolecules 24, 5614–5622 (1991).
Hollamby, M. J., Karny, M., Bomans, P. H. H., Sommerdijk, N. A. J. M., Saeki, A., Seki, S., Minamikawa, H., Grillo, I., Pauw, B. R., Brown, P., Eastoe, J., Möhwald, H. & Nakanishi, T. Directed assembly of optoelectronically active alkyl–π-conjugated molecules by adding n-alkanes or π-conjugated species. Nat. Chem. 6, 690–696 (2014).
Acknowledgements
This work was financially supported by a Grant-in-Aid for Scientific Research (No. 25288101) from the Japan Society for the Promotion of Science (JSPS) and the Cooperative Research Program ‘Network Joint Research Center for Materials and Devices’ (No. 2015467). All SAXS measurements were performed at the SPring-8 beamline (2016A1242, 2016A1619).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Ohata, T., Ishihara, K., Iwasaki, Y. et al. Water-soluble complex formation of fullerenes with a biocompatible polymer. Polym J 48, 999–1005 (2016). https://doi.org/10.1038/pj.2016.60
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2016.60