Abstract
The phase behavior of a high-concentration solution of as-prepared sulfobetaine zwitterionic polymer solution, poly(3-dimethyl(methacryloyloxy-ethyl)ammonium propane sulfonate betaine (polySBMA) synthesized via radical solution polymerization was investigated utilizing ultraviolet–visible analytical techniques. The solution exhibited a stably reversible phase transition between transparency and opacity. The transition temperature decreased with increasing polymer concentration, in contrast to the phase behaviors of most water-soluble polymers reported in the literature. The equilibrium concentrations of the purified polySBMA with various molecular weights were further investigated. It was found that unlike most water-soluble polymers, which have low equilibrium concentrations, polySBMA had a high equilibrium concentration. In addition, the as-prepared polySBMA solution with high concentration presented an over-swelling behavior that exerted an important effect on the transition temperature of the solution. In addition, variations in the thermosensitivity of the as-prepared polySBMA hydrogels with various concentrations of crosslinking agent were investigated, confirming the conclusion stated above. Therefore, the temperature-dependent phase transition of the as-prepared polySBMA solution could be controlled by adjusting the concentration of the monomer SBMA or the crosslinking agent to make it suitable for biomedical uses or uses in other fields in the future.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Chang, Y., Yandi, W., Chen, W. Y., Shih, Y. J., Yang, C. C., Chang, Y., Ling, Q. D. & Higuchi, A. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules 11, 1101–1110 (2010).
Wang, F., Klaikherd, A. & Thayumanavan, S. Temperature sensitivity trends and multi-stimuli sensitive behavior in amphiphilic oligomers. J. Am. Chem. Soc. 133, 13496–13503 (2011).
Tang, L., Liu, W. & Liu, G. High-strength hydrogels with integrated functions of H-bonding and thermoresponsive surface-mediated reverse transfection and cell detachment. Adv. Mater. 22, 2652–2656 (2010).
Su, Y., Zheng, L., Li, C. & Jiang, Z. Y. Smart zwitterionic membranes with on/off behavior for protein transport. J. Phys. Chem. B 112, 11923–11928 (2008).
Polzer, F., Heigl, J., Schneider, C., Ballauff, M. & Borisov, O. V. Synthesis and analysis of zwitterionic spherical polyelectrolyte brushes in aqueous solution. Macromolecules 44, 1654–1660 (2011).
Yang, W., Xue, H., Carr, L. R., Wang, J. & Jiang, S. Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media. Biosens. Bioelectron. 26, 2454–2459 (2011).
Rice, C. V. Phase-transition thermodynamics of N-isopropylacrylamide hydrogels. Biomacromolecules 7, 2923–2925 (2006).
Ono, Y. & Shikata, T. Hydration and dynamic behavior of poly(N-isopropylacrylamide)s in aqueous solution: a sharp phase transition at the lower critical solution temperature. J. Am. Chem. Soc. 128, 10030–10031 (2006).
Seuring, J. & Agarwal, S. Polymers with upper critical solution temperature in aqueous solution. Macromol. Rapid Commun. 33, 1898–1920 (2012).
Buscall, R. & Corner, T. The phase-separation behaviour of aqueous solutions of polyacrylic acid and its partial sodium salts in the presence of sodium chloride. Eur. Polym. J. 18, 967–974 (1982).
Huglin, M. B. & Radwan, M. A. Unperturbed dimensions of a zwitterionic polymethacrylate. Polym. Int. 26, 97–104 (1991).
Arotçaréna, M., Heise, B., Ishaya, S. & Laschewsky, A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J. Am. Chem. Soc. 124, 3787–3793 (2002).
Sabhapondit, A., Borthakur, A. & Haque, I. Characterization of acrylamide polymers for enhanced oil recovery. J. App. Poly. Sci. 87, 1869–1878 (2003).
Zhang, L. M., Tan, Y. B. & Li, Z. M. New water-soluble ampholytic polysaccharides for oilfield drilling treatment: a preliminary study. Carbohydr. Polym. 44, 255–260 (2001).
Zhang, Z., Chen, S. & Jiang, S. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7, 3311–3315 (2006).
Mumick, P. S., Welch, P. M., Salazar, L. C. & McCormick, C. L. Water-soluble copolymers. 56. Structure and solvation effects of polyampholytes in drag reduction. Macromolecules 27, 323–331 (1994).
Jiang, S. Y. & Cao, Z. Q. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920–932 (2010).
Salamone, J. C., Volksen, W., Olson, A. P. & Israel, S.C. Aqueous solution properties of a poly(vinyl imidazolium sulphobetaine). Polymer 19, 1157–1162 (1978).
Soto, V. M. M. & Galin, J. C. Poly(sulphopropylbetaines): 2. Dilute solution properties. Polymer 25, 254–262 (1984).
Carr, L., Cheng, G., Xue, H. & Jiang, S. Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. Langmuir 26, 14793–14798 (2010).
Ladd, J., Zhang, Z., Chen, S., Hower, J. C. & Jiang, S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9, 1357–1360 (2008).
Chang, Y., Chen, W. Y., Yandi, W., Shih, Y. J., Chu, W. L., Liu, Y. L., Chu, C.W., Ruaan, R. C. & Higuchi, A. Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropylacrylamide). Biomacromolecules 10, 2092–2100 (2009).
Liaw, D. J., Lee, W. F., Whung, Y. C. & Lin, M. C. Aqueous solution properties of poly[3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate. J. Appl. Polym. Sci. 34, 999–1011 (1987).
Berlinova, I. V., Dimitrov, I. V., Kalinova, R. G. & Vladimirov, N. G. Synthesis and aqueous solution behavior of copolymers containing sulfobetaine moieties in side chains. Polymer 41, 831–837 (2000).
Lee, W. F. & Lee, C. H. Poly(sulfobetaine)s and corresponding cationic polymers: 3. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from styrene-maleic anhydride. Polymer 38, 971–979 (1997).
Lee, W. F. & Tsai, C. C. Synthesis and solubility of the poly(sulfobetaine)s and the corresponding cationic polymers: 2. Aqueous solution properties of poly[N,N’-dimethyl-(acrylamide propyl) ammonium propane sulfonate]. Polymer 36, 357–364 (1995).
Schulz, D. N., Peiffer, D. G., Agarwal, P. K., Larabee, J., Kaladas, J. J, Handwerker, L. S. B. & Garner, R. T. G. Phase behavior and solution properties of sulphobetaine polymers. Polymer 27, 1734–1742 (1986).
Zhang, Z., Chao, T. & Jiang, S. Y. Physical, chemical, and chemical-physical double network of zwitterionic hydrogels. J. Phys. Chem. B 112, 5327–5332 (2008).
Yang, M., Liu, C., Li, Z. Y., Gao, G. & Liu, F. Q. Temperature-responsive properties of poly(acrylic acid-co-acrylamide) hydrophobic association hydrogels with high mechanical strength. Macromolecules 43, 10645–10651 (2010).
Ning, J. Y., Kubota, K., Li, G. & Haraguchi, K. Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by free-radical polymerization and effects of physical and chemical crosslinks on the UCST. React. Funct. Polym. 73, 969–978 (2013).
Yu, J. F., Li, Z. Y., Liu, X. L., Song, S. N., Gao, G. & Liu, F. Q. Molecular size and morphology of single chains of poly(sulfobetaine methacrylate). Chem. Res. Chin. Univ. 32, 499–504 (2016).
Huglin, M. B. & Radwan, M. A. Properties of poly[N-2-(methyacryloyloxy)ethyl-N,N-dimethyl-N-3-sulfopropylammoniumbetaine] in dilute solution. Makromol. Chem. 192, 2433–2445 (1991).
Huglin, M. B. & Radwan, M. A. Unperturbed dimensions of a zwitterionic polymethacrylate. Polym. Int. 26, 97–104 (1991).
Mary, P., Bendejacq, D. D., Labeau, M. P. & Dupuis, P. Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J. Phys. Chem. B. 111, 7767–7777 (2007).
Kamenova, I., Harrass, M., Lehmann, B., Friedrich, K., Ivanov, I. & Georigiev, G. Swelling of the zwitterionic copolymer networks and dehydration of their hydrogels. Macromol. Symp. 254, 122–127 (2007).
Georgiev, G. S., Mincheva, Z. P. & Georgieva, V. T. Temperature-sensitive polyzwitterionic gels. Macromol. Symp. 164, 301–311 (2001).
English, A. E., Mafé, S., Manzanares, J. A., Yu, X., Grosberg, A. Y. & Tanaka, T. Equilibrium swelling properties of polyampholytic hydrogels. J. Chem. Phys. 104, 8713–8720 (1996).
Hirotsu, S. Static and time-dependent properties of polymer gels around the volume phase transition. Phase Trans. 47, 183–240 (1994).
Acknowledgements
We acknowledge financial support from the National Natural Science Foundation of China (No. 21174053).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Yu, J., Liu, Y., Song, S. et al. Phase behavior of a high-concentration sulfobetaine zwitterionic polymer solution. Polym J 49, 767–774 (2017). https://doi.org/10.1038/pj.2017.51
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2017.51