Abstract
We report the shapeable synthesis of porous silica frameworks using polyacrylamide (PAAm) gel as an organic template and hydrolyzed silicon alkoxide as a silica source. Macroscopically shaped porous frameworks—such as plates, tablets and sheets—comprised of 20- to 40-nm diameter silica particles are obtained via PAAm–silica precursor gels. The mechanical properties (i.e., hardness and Young’s modulus) of the silica frameworks depend on the packing density and are controlled by changing the silica content in PAAm gels.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Coradin, T. & Lopez, P. J. Biogenic silica patterning: Simple chemistry or subtle biology? ChemBioChem 4, 251–259 (2003).
Foo, C. W., Huang, J. & Kaplan, D. L. Lessons from seashells: silica mineralization via protein templating. Trends Biotechnol. 22, 577–585 (2004).
Gordon, R., Losic, D., Tiffany, M. A., Nagy, S. S. & Sterrenburg, F. A. S. The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol. 27, 116–127 (2008).
Kröger, K. & Poulsen, N. Diatoms—from cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 42, 83–107 (2008).
Hildebrand, M. Diatoms, biomineralization processes, and genomics. Chem. Rev. 108, 4855–4874 (2008).
Aitken, Z. H., Luo, S., Reynolds, S. N., Thaulow, C. & Greer, J. R. Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule. Proc. Natl Acad. Sci. USA 113, 2017–2022 (2016).
Weaver, J. C., Milliron, G. W., Allen, P., Miserez, A., Rawal, A., Garay, J. P., Thurner, J., Seto, J., Mayzel, B., Friesen, L., Chmelka, J. B. F., Fratzl, P., Aizenberg, J., Dauphin, Y., Kisailus, D. & Morse, D, E. Unifying design strategies in Demosponge and Hexactinellid skeletal systems. J. Adhes. 86, 72–95 (2010).
Müller, W. E. G., Wang, X., Kropf, K., Ushijima, H., Geurtsen, W., Eckert, C., Tahir, M. N., Tremel, W., Boreiko, A., Schloßmacher, U., Li, J. & Schröder, H. C. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. J. Struct. Biol. 161, 188–203 (2008).
Aizenberg, J., Sundar, V. C., Yablon, A. D., Weaver, J. C. & Chen, G. Biological glass fibers: Correlation between optical and structural properties. Proc. Natl Acad. Sci. USA 101, 3358–3363 (2004).
Aizenberg, J., Weaver, J. C., Thanawala, M. S., Sundar, V. C., Morse, D. E. & Fratzl, P. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).
Müller, W. E. G., Wang, X., Sinha, B., Wiens, M., Schröder, H. C. & Jochum, K. P. NanoSIMS: insights into the organization of the proteinaceous scaffold within Hexactinellid sponge spicules. ChemBioChem 11, 1077–1082 (2010).
Müller, W. E. G., Wang, X., Burghard, Z., Bill, J., Krasko, A., Boreiko, A., Schloßmacher, U., Schröder, H. C. & Wiens, M. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni. J. Struct. Biol. 168, 548–561 (2009).
Schröder, H. C., Wang, X., Tremel, W., Ushijima, H. & Müller, W. E. G. Biofabrication of biosilica-glass by living organisms. Nat. Prod. Rep. 25, 455–474 (2008).
Perry, C. C. & Fraser, M. A. Silica deposition and ultrastructure in cell wall of Equisetum arvense: the importance of cell wall structure and flow control in biosilicification? Philos. Trans. R. Soc. Lond. Ser. B 334, 149–157 (1991).
Klinowski, J., Cheng, C., Sanz, J., Rojo, J. M. & Mackay, A. L. Structural studies of tabasheer, an opal of plant origin. Philos. Mag. A 77, 201–216 (1998).
Ma, J. F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 50, 11–18 (2004).
Soest, P. J. F. Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 130, 137–171 (2006).
Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y. & Yano, M. A silicon transporter in rice. Nature 440, 688–691 (2006).
Currie, H. A. & Perry, C. C. Silica in plants: biological, biochemical and chemical studies. Ann. Bot. 100, 1383–1389 (2007).
Epstein, E. Silicon: its manifold roles in plants. Ann. Appl. Biol. 155, 155–160 (2009).
Neethirajan, S., Gordon, R. & Wang, L. Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol. 27, 461–467 (2009).
Sato, K., Ozaki, N., Nakanishi, K., Sugahara, Y., Oaki, Y., Salinas, C., Herrera, S., Kisailus, D. & Imai, H. Effects of nanostructured biosilica on rice plant mechanics. RSC Adv. 7, 13065–13071 (2017).
Kröger, N., Deutzmann, R. & Sumper, M. Silica-precipitating peptides from diatoms—the chemical structure of silaffin-1A from Cylindrotheca fusiformis. J. Biol. Chem. 276, 26066–26070 (2001).
Shimizu, K., Cha, J., Stucky, G. D. & Morse, D. E. Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc. Natl Acad. Sci. USA 95, 6234–6238 (1998).
Müller, W. E. G., Eckert, C., Kropf, K., Wang, X., Schloßmacher, U., Seckert, C., Wolf, S. E., Tremel, W. & Schröder, H. C. Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Cell Tissue Res. 329, 363–378 (2007).
Crawford, S. A., Higgins, M. J., Mulvaney, P. & Wetherbee, R. Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J. Phycol. 37, 543–554 (2001).
Poulsen, N. & Kröger, N. Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana. J. Biol. Chem. 279, 42993–42999 (2004).
Mitzutani, T., Nagase, H., Fujiwara, N. & Ogoshi, H. Silicic acid polymerization catalyzed by amines and polyamines. Bull. Chem. Soc. Jpn 71, 2017–2022 (1998).
Iler, R. K. The Chemistry of Silica, (Wiley, New York, NY, 1979).
Zhou, F., Li, S., Vo, C. D., Yuan, J. J., Chai, S., Gao, Q., Armes, S. P., Lu, C. & Cheng, S. Biomimetic deposition of silica templated by a cationic polyamine-containing microgel. Langmuir 23, 9737–9744 (2007).
Pi, M., Yang, T., Yuan, J., Fujii, S., Kakigi, Y., Nakamura, Y. & Cheng, S. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell. Colloids Surf. B 78, 193–199 (2010).
Hoshino, T., Sato, K., Oaki, Y., Sugawara-Narutaki, A., Shimizu, K., Ozaki, N. & Imai, H. Plant opal-mimetic bunching silica nanoparticles mediated by long-chain polyethyleneimine. RSC Adv. 6, 1301–1306 (2016).
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. & Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).
Yang, P., Deng, T., Zhao, D., Feng, P., Pine, D., Chmelka, B. F., Whitesides, G. M. & Stucky, G. D. Hierarchically ordered oxides. Science 282, 2244–2246 (1998).
Nakanishi, K. Pore Structure control of silica gels based on phase separation. J. Por. Mater. 4, 67–112 (1997).
Nakanishi, K. & Tanaka, N. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 40, 863–873 (2007).
Yan, X. & Lei, Z. Silicon dioxide hollow microspheres with porous composite structure: Synthesis and characterization. J. Colloid Interface Sci. 362, 253–260 (2011).
Tamaki, R., Naka, K. & Chujo, Y. Synthesis of polystyrene/silica gel polymer hybrids by in-situ polymerization method. Polym. Bull. 39, 303–310 (1997).
Tamaki, R., Naka, K. & Chujo, Y. Synthesis of poly(N,N-dimethylacrylamide) silica gel polymer hybrids by in situ polymerization method. Polym. J. 30, 60–65 (1998).
Oliver, W. & Pharr, G. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).
Jauffrès, D., Yacou, C., Verdier, M., Dendievel, R. & Ayral, A. Mechanical properties of hierarchical porous silica thin films: experimental characterization by nanoindentation and Finite Element modeling. Micropor. Mesopor. Mater. 140, 120–129 (2011).
Acknowledgements
We gratefully acknowledge assistance for sample preparation by S Funyu and mercury prosimetry measurements by Dr Kei Morisato at the Kyoto University/GL Sciences. This work was supported by Grant-in-Aid for Scientific Research (A) (16H02398) from Japan Society for the Promotion of Science.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Sato, K., Ishii, K., Oaki, Y. et al. Polymer-assisted shapeable synthesis of porous frameworks consisting of silica nanoparticles with mechanical property tuning. Polym J 49, 825–830 (2017). https://doi.org/10.1038/pj.2017.62
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2017.62