Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Report of a missense TJP2 variant associated to PFIC4 with a pronounced phenotypic variability: Focus on the structural effects on the protein level

Abstract

PFIC4 is a chronic liver disease which cannot be diagnosed based on clinical and biochemical findings with an unpredictable evolution. Here, we reported three consanguineous families with 9 children suffering from intrahepatic cholestasis with low GGT-activity. Three probands were chosen to undergo genetic testing. In silico analyses were conducted to assess the functional impact of the identified variant, along with variants occurring at highly conserved positions within the protein. Additionally, close clinical monitoring was carried. Targeted-NGS sequencing ruled out the diagnosis of PFIC1 and PFIC2. Subsequently, WES allowed the establishment of PFIC4 diagnosis for the three families through the identification of a homozygous TJP2 variant p. Gly532Arg classified as likely pathogenic with a structural damage predicted based on biomolecular modeling and simulation analysis. In-depth in silico analysis of 90 nsSNPs occurring in highly conserved residues in PDZ domains showed 14 ones seems to be relevant in the clinical practice. Clinically, a pronounced phenotypic variability is noted. In conclusion, our study described a homozygous missense PFIC4-related variant with a highlight on the pathogenic power of such types of variants. The clinical evaluation provided information about the importance of close monitoring to prevent liver failure and clarified the unexpected course of PFIC4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amer S, Hajira A. A comprehensive review of progressive familial intrahepatic cholestasis (PFIC): genetic disorders of hepatocanalicular transporters. Gastroenterol Res. 2014;7:39.

    CAS  Google Scholar 

  2. Vitale G, Mattiaccio A, Conti A, Turco L, Seri M, Piscaglia F, et al. Genetics in familial intrahepatic cholestasis: clinical patterns and development of liver and biliary cancers: a review of the literature. Cancers. 2022;14:3421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sambrotta M, Strautnieks S, Papouli E, Rushton P, Clark BE, Parry DA, et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet. 2014;46:326–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang J, Liu LL, Gong JY, Hao CZ, Qiu YL, Lu Y, et al. TJP2 hepatobiliary disorders: novel variants and clinical diversity. Hum Mutat. 2020;41:502–11.

    Article  PubMed  Google Scholar 

  5. Wei CS, Becher N, Friis JB, Ott P, Vogel I, Grønbæk H. New tight junction protein 2 variant causing progressive familial intrahepatic cholestasis type 4 in adults: A case report. World J Gastroenterol. 2020;26:550.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 2003;34:91–96.

    Article  CAS  PubMed  Google Scholar 

  7. Dixon PH, Sambrotta M, Chambers J, Taylor-Harris P, Syngelaki A, Nicolaides K, et al. An expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in intrahepatic cholestasis of pregnancy. Sci Rep. 2017;7. 11823.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kornitzer GA, Alvarez F. Case report: a novel single variant TJP2 mutation in a case of benign recurrent intrahepatic cholestasis. JPGN Rep. 2021;2:e087.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beatch M, Jesaitis LA, Gallin WJ, Goodenough DA, Stevenson BR. The tight junction protein ZO-2 contains three PDZ (PSD-95Discs-LargeZO-1) domains and an alternatively spliced region. J Biol Chem. 1996;271:25723–6.

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Mariscal L, Bautista P, Lechuga S, Quiros M. ZO-2, a tight junction scaffold protein involved in the regulation of cell proliferation and apoptosis. Ann N Y Acad Sci. 2012;1257:133–41.

    Article  CAS  PubMed  Google Scholar 

  11. Itoh M, Terada M, Sugimoto H. The zonula occludens protein family regulates the hepatic barrier system in the murine liver. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis. 2021;1867:165994.

    Article  CAS  Google Scholar 

  12. Shinwari K, Guojun L, Deryabina SS, Bolkov MA, Tuzankina IA, Chereshnev VA. Predicting the most deleterious missense nonsynonymous single-nucleotide polymorphisms of hennekam syndrome-causing CCBE1 gene, in silico analysis. Sci World J. 2021;2021:1–19.

    Article  Google Scholar 

  13. Behairy MY, Abdelrahman AA, Abdallah HY, Ibrahim EEDA, Sayed AA, Azab MM. In silico analysis of missense variants of the C1qA gene related to infection and autoimmune diseases. J Taibah Univ Med Sci. 2022;17:1074–82.

    PubMed  PubMed Central  Google Scholar 

  14. Poon KS. In silico analysis of BRCA1 and BRCA2 missense variants and the relevance in molecular genetic testing. Sci Rep. 2021;11. 11114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mansouri M, El Haddoumi G, Bendani H, Boumajdi N, Hakmi M, Abbou H, et al. In silico analyses of all STAT3 missense variants leading to explore divergent AD-HIES clinical phenotypes. Evolut Bioinforma. 2023;19. 11769343231169374.

    Article  Google Scholar 

  16. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R. Crystal structures of a complexed and peptide-free membrane protein–binding domain: molecular basis of peptide recognition by PDZ. Cell. 1996;85:1067–76.

    Article  CAS  PubMed  Google Scholar 

  17. Rosina E, Pezzani L, Pezzoli L, Marchetti D, Bellini M, Pilotta A, et al. Atypical, composite, or blended phenotypes: how different molecular mechanisms could associate in double-diagnosed patients. Genes. 2022;13:1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walters-Sen LC, Hashimoto S, Thrush DL, Reshmi S, Gastier-Foster JM, Astbury C, et al. Variability in pathogenicity prediction programs: impact on clinical diagnostics. Mol Genet Genom Med. 2015;3:99–110.

    Article  Google Scholar 

  19. Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat. 2011;32:358–68.

    Article  PubMed  Google Scholar 

  20. Wang D, Li J, Wang Y, Wang E. A comparison on predicting functional impact of genomic variants. NAR genomics Bioinforma. 2022;4. lqab122.

    Article  Google Scholar 

  21. Dou J, Vorobieva AA, Sheffler W, Doyle LA, Park H, Bick MJ, et al. De novo design of a fluorescence-activating β-barrel. Nature. 2018;561:485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tokuriki N, Tawfik DS. Stability effects of mutations and protein evolvability. Curr Opin Struct Biol. 2009;19:596–604.

    Article  CAS  PubMed  Google Scholar 

  23. Idicula-Thomas S, Balaji PV. Correlation between the structural stability and aggregation propensity of proteins. silico Biol. 2007;7:225–37.

    Article  CAS  Google Scholar 

  24. Dudola D, Hinsenkamp A, Gáspári Z. Ensemble-Based analysis of the dynamic allostery in the PSD-95 PDZ3 domain in relation to the general variability of PDZ structures. Int J Mol Sci. 2020;21:8348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heinemann U, Schuetz A. Structural features of tight-junction proteins. Int J Mol Sci. 2019;20:6020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. MacGowan SA, Madeira F, Britto-Borges T, Schmittner MS, Cole C, Barton GJ. Human missense variation is constrained by domain structure and highlights functional and pathogenic residues. BioRxiv. 2017;127050.

  27. Iqbal S, Pérez-Palma E, Jespersen JB, May P, Hoksza D, Heyne HO, et al. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants. Proc Natl Acad Sci. 2020;117:28201–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lipiński P, Ciara E, Jurkiewicz D, Pollak A, Wypchło M, Płoski R, et al. Targeted next-generation sequencing in diagnostic approach to monogenic cholestatic liver disorders—single-center experience. Front Pediatr. 2020;8:414.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tang J, Tan M, Deng Y, Tang H, Shi H, Li M, et al. Two novel pathogenic variants of TJP2 gene and the underlying molecular mechanisms in progressive familial intrahepatic cholestasis type 4 patients. Front Cell Dev Biol. 2021;9. 661599.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zöllner J, Finer S, Linton KJ, van Heel DA, Williamson C, Dixon PH. Rare variant contribution to cholestatic liver disease in a South Asian population in the United Kingdom. Sci Rep. 2023;13. 8120.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhou S, Hertel PM, Finegold MJ, Wang L, Kerkar N, Wang J, et al. Hepatocellular carcinoma associated with tight-junction protein 2 deficiency. Hepatology. 2015;62:1914–6.

    Article  PubMed  Google Scholar 

  32. Rajabi S, Dastmalchi R, Dehghan MH, Eftekharian A, Aghazadeh E, Ghaderian SMH. TJP2 Gene Mutation c. G1012A May Responsible for Congenital Hearing Loss with Incomplete Penetrance in An Iranian Pedigree. J Genet Resour. 2019;5:143–8.

    Google Scholar 

  33. Zhang J, Guo S, Mei TL, Zhou J, Guan DX, Wang GL. Novel mutation of the TJP2 gene in a Chinese child with progressive cholestatic liver disease coexistent with hearing impairment. Hepatobiliary Pancreat Dis Int. 2021;20:198–200.

    Article  PubMed  Google Scholar 

  34. Gong R, Li S. Extraction of human genomic DNA from whole blood using a magnetic microsphere method. Int J Nanomed. 2014;9:3781–9.

  35. Khabou B, Mahjoub B, Barbu V, Balhoudi N, Wardani A, Sfar MT, et al. Phenotypic variability in Tunisian PFIC3 patients harboring a complex genotype with a differential clinical outcome of UDCA treatment. Clin Chim Acta. 2018;486:122–8.

    Article  CAS  PubMed  Google Scholar 

  36. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic acids Res. 2019;47:D886–D894.

    Article  CAS  PubMed  Google Scholar 

  37. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem theory Comput. 2013;9:3084–95.

    Article  CAS  PubMed  Google Scholar 

  39. McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J. 2015;109:1528–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mirza N, Bharadwaj R, Malhotra S, Sibal A. Progressive familial intrahepatic cholestasis type 4 in an Indian child: presentation, initial course and novel compound heterozygous mutation. BMJ Case Rep CP. 2020;13:e234193.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Center for High Performance Computing (CHPC), South Africa, for providing computational resources to conduct the molecular simulation analysis. And Ribosite Biotechnology company for advanced molecular biology technical support and customized services. This project is carried out under the MOBIDOC scheme, funded by the EU through the SWAFY proJECT and managed by the ANPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boudour Khabou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabou, B., Othman, H., Guirat, M. et al. Report of a missense TJP2 variant associated to PFIC4 with a pronounced phenotypic variability: Focus on the structural effects on the protein level. J Hum Genet 70, 331–339 (2025). https://doi.org/10.1038/s10038-025-01338-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s10038-025-01338-w

Search

Quick links