Table 1 Quantitative comparisons with state-of-the-art methods on three datasets, including DDenoise, DRestore, and DSynthetic, measured by average PSNR and SSIM metrics
From: Oracle bone inscription image restoration via glyph extraction
Methods | DDenoise | DRestore | DSynthetic | |||
---|---|---|---|---|---|---|
PSNR↑ | SSIM↑ | PSNR↑ | SSIM↑ | PSNR↑ | SSIM↑ | |
Raw Image | 8.23 | 0.3689 | 8.01 | 0.3566 | 15.14 | 0.1718 |
DeepRes56 | 13.77 | 0.5969 | 12.90 | 0.5765 | 21.59 | 0.8397 |
DnCNN47 | 13.63 | 0.6245 | 13.31 | 0.6044 | 18.81 | 0.7591 |
IDCCW38 | 15.06 | 0.6580 | 14.49 | 0.5998 | 21.62 | 0.8553 |
SinGAN37 | 17.98 | 0.8129 | 18.05 | 0.8238 | 22.64 | 0.8974 |
Noise2same58 | 13.12 | 0.6103 | 12.57 | 0.5931 | 18.86 | 0.7624 |
InvDN57 | 17.22 | 0.7980 | 16.97 | 0.7630 | 22.18 | 0.8840 |
Wavelet filtering60 | 9.79 | 0.3850 | 9.55 | 0.3907 | 16.22 | 0.2459 |
Bilateral filtering60 | 10.42 | 0.4031 | 10.30 | 0.4129 | 16.62 | 0.2557 |
BM3D59 | 10.58 | 0.4259 | 10.22 | 0.4142 | 20.06 | 0.8368 |
DiffACR39 | 16.84 | 0.8248 | 16.65 | 0.8254 | 21.76 | 0.8864 |
Our Method | 19.32 | 0.8663 | 18.83 | 0.8732 | 22.69 | 0.8942 |