Table 1 Quantitative comparisons with state-of-the-art methods on three datasets, including DDenoise, DRestore, and DSynthetic, measured by average PSNR and SSIM metrics

From: Oracle bone inscription image restoration via glyph extraction

Methods

DDenoise

DRestore

DSynthetic

 

PSNR

SSIM

PSNR

SSIM

PSNR

SSIM

Raw Image

8.23

0.3689

8.01

0.3566

15.14

0.1718

DeepRes56

13.77

0.5969

12.90

0.5765

21.59

0.8397

DnCNN47

13.63

0.6245

13.31

0.6044

18.81

0.7591

IDCCW38

15.06

0.6580

14.49

0.5998

21.62

0.8553

SinGAN37

17.98

0.8129

18.05

0.8238

22.64

0.8974

Noise2same58

13.12

0.6103

12.57

0.5931

18.86

0.7624

InvDN57

17.22

0.7980

16.97

0.7630

22.18

0.8840

Wavelet filtering60

9.79

0.3850

9.55

0.3907

16.22

0.2459

Bilateral filtering60

10.42

0.4031

10.30

0.4129

16.62

0.2557

BM3D59

10.58

0.4259

10.22

0.4142

20.06

0.8368

DiffACR39

16.84

0.8248

16.65

0.8254

21.76

0.8864

Our Method

19.32

0.8663

18.83

0.8732

22.69

0.8942

  1. The best results are highlighted in bold font.