Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A clinician’s musings on oxygen: Too little or too much with life in the balance

Abstract

The most abundant element on Earth, oxygen (O2) is essential for all complex, eukaryotic life. Because under- (hypoxia) or overexposure (hyperoxia) to O2 can be detrimental, achieving the ideal balance is crucial for human survival. In this perspective, we discuss the fundamental role of hemoglobin in O2 transport and tissue oxygenation. We also discuss the role that O2. can play in oxidative stress, sometimes initiating inflammatory cascades in vulnerable individuals, such as those with deficiencies in antioxidant defenses or with immune dysregulation. Preterm newborns may be especially prone to such oxidative injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sanchez-Baracaldo P, Bianchini G, Wilson JD, Knoll AH. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 2022;30:143–57.

    Article  CAS  PubMed  Google Scholar 

  2. Winslow RM. Oxygen: the poison is in the dose. Transfusion. 2013;53:424–37.

    Article  CAS  PubMed  Google Scholar 

  3. Meng F, Kassa T, Jana S, Wood F, Zhang X, Jia Y, et al. Comprehensive biochemical and biophysical characterization of hemoglobin-based oxygen carrier therapeutics: All HBOCs are not created equally. Bioconjug Chem. 2018;29:1560–75.

    Article  PubMed  Google Scholar 

  4. Winslow RM. The role of hemoglobin oxygen affinity in oxygen transport at high altitude. Respir Physiol Neurobiol. 2007;158:121–7.

    Article  CAS  PubMed  Google Scholar 

  5. Pittman RN. Oxygen transport in the microcirculation and its regulation. Microcirculation. 2013;20:117–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Charlton M, Sims M, Coats T, Thompson JP. The microcirculation and its measurement in sepsis. J Intensive Care Soc. 2017;18:221–7.

    Article  PubMed  Google Scholar 

  7. Tsai AG, Johnson PC, Intaglietta M. Oxygen gradients in the microcirculation. Physiol Rev. 2003;83:933–63.

    Article  CAS  PubMed  Google Scholar 

  8. Wilson DF, Erecinska M. Effect of oxygen concentration on cellular metabolism. Chest. 1985;88:229S–32S.

    Article  CAS  PubMed  Google Scholar 

  9. Katona M, Gladwin MT, Straub AC. Flipping off and on the redox switch in the microcirculation. Annu Rev Physiol. 2023;85:165–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benesch RE, Maeda N, Benesch R. 2,3-Diphosphoglycerate and the relative affinity of adult and fetal hemoglobin for oxygen and carbon monoxide. Biochim Biophys Acta. 1972;257:178–82.

    Article  CAS  PubMed  Google Scholar 

  11. Almeida AS, Figueiredo-Pereira C, Vieira HL. Carbon monoxide and mitochondria-modulation of cell metabolism, redox response and cell death. Front Physiol. 2015;6:33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Di Cera E, Doyle ML, Morgan MS, De Cristofaro R, Landolfi R, Bizzi B, et al. Carbon monoxide and oxygen binding to human hemoglobin F0. Biochemistry. 1989;28:2631–8.

    Article  PubMed  Google Scholar 

  13. Leonard MB, Vreman HJ, Ferguson JE 2nd, Smith DW, Stevenson DK. Interpreting the carboxyhaemoglobin concentration in fetal cord blood. J Dev Physiol. 1989;11:73–6.

    CAS  PubMed  Google Scholar 

  14. Friedman P, Guo XM, Stiller RJ, Laifer SA. Carbon monoxide exposure during pregnancy. Obstet Gynecol Surv. 2015;70:705–12.

    Article  PubMed  Google Scholar 

  15. Fossen Johnson S. Methemoglobinemia: infants at risk. Curr Probl Pediatr Adolesc Health Care. 2019;49:57–67.

    PubMed  Google Scholar 

  16. Salguero KL, Cummings JJ. Inhaled nitric oxide and methemoglobin in full-term infants with persistent pulmonary hypertension of the newborn. Pulm Pharm Ther. 2002;15:1–5.

    Article  CAS  Google Scholar 

  17. Srinivasan AJ, Morkane C, Martin DS, Welsby I. Should modulation of p50 be a therapeutic target in the critically ill? Expert Rev Hematol. 2017;10:449–58.

    Article  CAS  PubMed  Google Scholar 

  18. Seltzer JA, Bubic I, Winkler GA, Friedman NA, Bagby J, Tomaszewski CA, et al. Sulfhemoglobinemia and methemoglobinemia following acetaminophen overdose. Toxicol Rep. 2022;9:1725–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Narayan S, Petersen TL. Uncommon etiologies of shock. Crit Care Clin. 2022;38:429–41.

    Article  PubMed  Google Scholar 

  20. Brandenburg RO, Smith HL. Sulfhemoglobinemia; a study of 62 clinical cases. Am Heart J. 1951;42:582–8.

    Article  CAS  PubMed  Google Scholar 

  21. Esan AJ. Hematological differences in newborn and aging: a review study. Hematol Transfus Int J. 2016;3:178–90.

    Google Scholar 

  22. Hellstrom W, Martinsson T, Hellstrom A, Morsing E, Ley D. Fetal haemoglobin and bronchopulmonary dysplasia in neonates: an observational study. Arch Dis Child Fetal Neonatal Ed. 2021;106:88–92.

    Article  PubMed  Google Scholar 

  23. Prasad N, Dubey A, Kumar K, Shrivastava J. Role of fetal hemoglobin in the development and progression of retinopathy of prematurity in preterm infants. Indian J Ophthalmol. 2023;71:3478–83.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fevereiro-Martins M, Aguiar L, Inacio A, Cardoso C, Santos AC, Marques-Neves C, et al. Fetal hemoglobin as a predictive biomarker for retinopathy of prematurity: a prospective multicenter cohort study in Portugal. Biomedicines. 2025;13:110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiramongkolchai K, Repka MX, Tian J, Aucott SW, Shepard J, Collins M, et al. Lower foetal haemoglobin levels at 31- and 34-weeks post menstrual age is associated with the development of retinopathy of prematurity: PacIFiHER Report No. 1 PacIFiHER Study Group (Preterm Infants and Fetal Haemoglobin in ROP). Eye. 2021;35:659–64.

    Article  CAS  PubMed  Google Scholar 

  26. Orlando N, Pellegrino C, Valentini CG, Bianchi M, Barbagallo O, Sparnacci S, et al. Umbilical cord blood: current uses for transfusion and regenerative medicine. Transfus Apher Sci. 2020;59:102952.

    Article  PubMed  Google Scholar 

  27. Razak A, Malhotra A. Potential applications of umbilical cord blood-derived cells in neonatal diseases. Neoreviews. 2025;26:e297–e306.

    Article  PubMed  Google Scholar 

  28. Hassall OW, Thitiri J, Fegan G, Hamid F, Mwarumba S, Denje D, et al. Safety and efficacy of allogeneic umbilical cord red blood cell transfusion for children with severe anaemia in a Kenyan hospital: an open-label single-arm trial. Lancet Haematol. 2015;2:e101–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bianchi M, Giannantonio C, Spartano S, Fioretti M, Landini A, Molisso A, et al. Allogeneic umbilical cord blood red cell concentrates: an innovative blood product for transfusion therapy of preterm infants. Neonatology. 2015;107:81–6.

    Article  CAS  PubMed  Google Scholar 

  30. Teofili L, Papacci P, Dani C, Cresi F, Remaschi G, Pellegrino C, et al. Cord blood transfusions in extremely low gestational age neonates to reduce severe retinopathy of prematurity: results of a prespecified interim analysis of the randomized BORN trial. Ital J Pediatr. 2024;50:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ellsworth ML, Ellis CG, Popel AS, Pittman RN. Role of microvessels in oxygen supply to tissue. N Physiol Sci. 1994;9:119–23.

    Google Scholar 

  32. Klijn E, Den Uil CA, Bakker J, Ince C. The heterogeneity of the microcirculation in critical illness. Clin Chest Med. 2008;29:643–54, viii.

    Article  PubMed  Google Scholar 

  33. Rizzoni D, Mengozzi A, Masi S, Agabiti Rosei C, De Ciuceis C, Virdis A. New noninvasive methods to evaluate microvascular structure and function. Hypertension. 2022;79:874–86.

    Article  CAS  PubMed  Google Scholar 

  34. Perrone S, Bracciali C, Di Virgilio N, Buonocore G. Oxygen use in neonatal care: a two-edged sword. Front Pediatr. 2016;4:143.

    PubMed  Google Scholar 

  35. Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respir Med. 2013;107:789–99.

    Article  PubMed  Google Scholar 

  36. Ross PA, Newth CJ, Khemani RG. Accuracy of pulse oximetry in children. Pediatrics. 2014;133:22–9.

    Article  PubMed  Google Scholar 

  37. Rosychuk RJ, Hudson-Mason A, Eklund D, Lacaze-Masmonteil T. Discrepancies between arterial oxygen saturation and functional oxygen saturation measured with pulse oximetry in very preterm infants. Neonatology. 2012;101:14–9.

    Article  CAS  PubMed  Google Scholar 

  38. Liao C, Zhang Q. Understanding the oxygen-sensing pathway and its therapeutic implications in diseases. Am J Pathol. 2020;190:1584–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tenhunen R, Marver HS, Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 1969;244:6388–94.

    Article  CAS  PubMed  Google Scholar 

  40. Sedlak TW, Snyder SH. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics. 2004;113:1776–82.

    Article  PubMed  Google Scholar 

  41. Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1029–37.

    Article  CAS  PubMed  Google Scholar 

  42. Yet SF, Layne MD, Liu X, Chen YH, Ith B, Sibinga NE, et al. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J. 2003;17:1759–61.

    Article  CAS  PubMed  Google Scholar 

  43. Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA. 1997;94:10919–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Konrad FM, Zwergel C, Ngamsri KC, Reutershan J. Anti-inflammatory effects of heme oxygenase-1 depend on adenosine A(2A)- and A(2B)-receptor signaling in acute pulmonary inflammation. Front Immunol. 2017;8:1874.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alam J, Shibahara S, Smith A. Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse hepatoma cells. J Biol Chem. 1989;264:6371–5.

    Article  CAS  PubMed  Google Scholar 

  46. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999;274:26071–8.

    Article  CAS  PubMed  Google Scholar 

  47. Igarashi K, Sun J. The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal. 2006;8:107–18.

    Article  CAS  PubMed  Google Scholar 

  48. Leffler CW, Parfenova H, Jaggar JH, Wang R. Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol. 2006;100:1065–76.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao H, Wong RJ, Stevenson DK. The impact of hypoxia in early pregnancy on placental cells. Int J Mol Sci. 2021;22:9675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hartnett ME, Lane RH. Effects of oxygen on the development and severity of retinopathy of prematurity. J AAPOS. 2013;17:229–34.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gaynon MW, Wong RJ, Stevenson DK, Sunshine P. Prethreshold retinopathy of prematurity: VEGF inhibition without VEGF inhibitors. J Perinatol. 2018;38:1295–300.

    Article  CAS  PubMed  Google Scholar 

  52. Zimmerman RA, Tsai AG, Intaglietta M, Tartakovsky DM. A mechanistic analysis of possible blood transfusion failure to increase circulatory oxygen delivery in anemic patients. Ann Biomed Eng. 2019;47:1094–105.

    Article  PubMed  Google Scholar 

  53. Tariket S, Hamzeh-Cognasse H, Laradi S, Arthaud CA, Eyraud MA, Bourlet T, et al. Evidence of CD40L/CD40 pathway involvement in experimental transfusion-related acute lung injury. Sci Rep. 2019;9:12536.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Prematurity Research Fund; the March of Dimes Prematurity Research Center at Stanford University; the Charles B. and Ann L. Johnson Research Fund; the Christopher Hess Research Fund; the Providence Foundation Research Fund; the Roberts Foundation Research Fund; the Stanford Maternal and Child Health Research Institute; and the Stanford Cardiovascular Institute.

Author information

Authors and Affiliations

Authors

Contributions

DKS, RJW, JDR, IM, AMP and TLA drafted the initial manuscript, revised the manuscript, and approved the final version. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to David K. Stevenson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevenson, D.K., Wong, R.J., Reiss, J.D. et al. A clinician’s musings on oxygen: Too little or too much with life in the balance. J Perinatol (2025). https://doi.org/10.1038/s41372-025-02398-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41372-025-02398-8

Search

Quick links