Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

STEM CELL BIOLOGY

MSI2 mediates WNT/β-Catenin pathway function in hematopoietic stem cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MSI2 mediates WNT/β-Catenin pathway function in hematopoietic stem cells.
Fig. 2: MSI2 sustains calcium-binding protein S100A4 to promote del(5q) MDS.

Data availability

RNA-seq data has been deposited in NCBI with reference number (PRJNA1151997).

References

  1. Will B, Zhou L, Vogler TO, Ben-Neriah S, Schinke C, Tamari R, et al. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood. 2012;120:2076–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ebert BL. Molecular dissection of the 5q deletion in myelodysplastic syndrome. Semin Oncol. 2011;38:621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stoddart A, Wang J, Hu C, Fernald AA, Davis EM, Cheng JX, et al. Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apc(del/+) MDS mouse model. Blood. 2017;129:2959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kharas MG, Lengner CJ. Stem Cells, Cancer, and MUSASHI in Blood and Guts. Trends Cancer. 2017;3:347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pellagatti A, Cazzola M, Giagounidis A, Perry J, Malcovati L, Della Porta MG, et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia. 2010;24:756–64.

    Article  CAS  PubMed  Google Scholar 

  6. Kharas MG, Lengner CJ, Al-Shahrour F, Bullinger L, Ball B, Zaidi S, et al. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med. 2010;16:903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheng Y, Ma R, Yu C, Wu Q, Zhang S, Paulsen K, et al. Role of c-Myc haploinsufficiency in the maintenance of HSCs in mice. Blood. 2021;137:610–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moparthi L, Koch S. FOX transcription factors are common regulators of Wnt/β-catenin-dependent gene transcription. J Biol Chem. 2023;299:104667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, et al. Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 2021;278:119499.

    Article  CAS  PubMed  Google Scholar 

  10. Su H, Jiang M, Senevirathne C, Aluri S, Zhang T, Guo H, et al. Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Rep. 2021;36:109421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Figg JW, Barajas JM, Obeng EA. Therapeutic approaches targeting splicing factor mutations in myelodysplastic syndromes and acute myeloid leukemia. Curr Opin Hematol. 2021;28:73–79.

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen DTT, Lu Y, Chu KL, Yang X, Park SM, Choo ZN, et al. HyperTRIBE uncovers increased MUSASHI-2 RNA binding activity and differential regulation in leukemic stem cells. Nat Commun. 2020;11:2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gíslason MH, Demircan GS, Prachar M, Furtwängler B, Schwaller J, Schoof EM, et al. BloodSpot 3.0: a database of gene and protein expression data in normal and malignant haematopoiesis. Nucleic Acids Res. 2024;52:D1138–d1142.

    Article  PubMed  Google Scholar 

  14. Sherbet GV. Metastasis promoter S100A4 is a potentially valuable molecular target for cancer therapy. Cancer Lett. 2009;280:15–30.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014;349:8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sack U, Walther W, Scudiero D, Selby M, Kobelt D, Lemm M, et al. Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer. J Natl Cancer Inst. 2011;103:1018–36.

    Article  CAS  PubMed  Google Scholar 

  17. Watts J, Lin TL, Mims A, Patel P, Lee C, Shahidzadeh A, et al. Post-hoc Analysis of Pharmacodynamics and Single-Agent Activity of CD3xCD123 Bispecific Antibody APVO436 in Relapsed/Refractory AML and MDS Resistant to HMA or Venetoclax Plus HMA. Front Oncol. 2021;11:806243.

    Article  CAS  PubMed  Google Scholar 

  18. Mishra SK, Siddique HR, Saleem M. S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev. 2012;31:163–72.

    Article  CAS  PubMed  Google Scholar 

  19. Alanazi B, Munje CR, Rastogi N, Williamson AJK, Taylor S, Hole PS, et al. Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia. 2020;34:427–40.

    Article  CAS  PubMed  Google Scholar 

  20. Milani M, Mammarella E, Rossi S, Miele C, Lattante S, Sabatelli M, et al. Targeting S100A4 with niclosamide attenuates inflammatory and profibrotic pathways in models of amyotrophic lateral sclerosis. J Neuroinflammation. 2021;18:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wen J, Jiao B, Tran M, Wang Y. Pharmacological Inhibition of S100A4 Attenuates Fibroblast Activation and Renal Fibrosis. Cells. 2022;11:2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Treese C, Hartl K, Pötzsch M, Dahlmann M, von Winterfeld M, Berg E, et al. S100A4 Is a Strong Negative Prognostic Marker and Potential Therapeutic Target in Adenocarcinoma of the Stomach and Esophagus. Cells. 2022;11:1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Serrano A, Apolloni S, Rossi S, Lattante S, Sabatelli M, Peric M, et al. The S100A4 Transcriptional Inhibitor Niclosamide Reduces Pro-Inflammatory and Migratory Phenotypes of Microglia: Implications for Amyotrophic Lateral Sclerosis. Cells. 2019;8:1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang W, Liu LB, Liu FL, Wu YH, Zhen ZD, Fan DY, et al. Single-cell RNA sequencing reveals the fragility of male spermatogenic cells to Zika virus-induced complement activation. Nat Commun. 2023;14:2476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leung SW, Chou CJ, Huang TC, Yang PM. An Integrated Bioinformatics Analysis Repurposes an Antihelminthic Drug Niclosamide for Treating HMGA2-Overexpressing Human Colorectal Cancer. Cancers. 2019;11:1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Helfman DM. Niclosamide: an established antihelminthic drug as a potential therapy against S100A4-mediated metastatic colon tumors. J Natl Cancer Inst. 2011;103:991–2.

    Article  CAS  PubMed  Google Scholar 

  27. Burock S, Daum S, Keilholz U, Neumann K, Walther W, Stein U. Phase II trial to investigate the safety and efficacy of orally applied niclosamide in patients with metachronous or sychronous metastases of a colorectal cancer progressing after therapy: the NIKOLO trial. BMC Cancer. 2018;18:297.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by grants from the National Natural Science Foundation of China (32270791, 82070175, 82370128), the Scientific Research Project of Hunan Provincial Health Commission (C202303046332), the Scientific Research Project of Hunan Provincial Department of Education (23A0018), Huxiang Youth Talent Support Program (2022RC1205), International Centre for Genetic Engineering and Biotechnology – ICGEB (CRP/CHN22-03_EC) and the American Society of Hematology.

Author information

Authors and Affiliations

Contributions

Yue Sheng, Hongling Peng and Huifang Zhang designed the study; Huifang Zhang, Ruixue Guo, Zhenfen Li and Rui Ma performed experiments; Shina Xu, Ruixue Guo, Cheng Xing, Yunlong Yang, Yulin Pu, Le Yin, Hongkai Zhu, Zhao Cheng, Jing Liu and Zineng Huang analyzed data; Huifang Zhang and Yue Sheng wrote the manuscript; and all authors provided critical review of the manuscript.

Corresponding authors

Correspondence to Huifang Zhang, Hongling Peng or Yue Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All methods were performed in accordance with the relevant guidelines and regulations. The Animal Care and Use Committee of the Second Xiangya Hospital granted approval for all animal experiments (Approve number: 2022647).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Guo, R., Li, Z. et al. MSI2 mediates WNT/β-Catenin pathway function in hematopoietic stem cells. Leukemia 39, 265–270 (2025). https://doi.org/10.1038/s41375-024-02447-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-024-02447-9

This article is cited by

Search

Quick links