Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

The proto-oncogenic miR-106a-363 cluster enhances adverse risk acute myeloid leukemia through mitochondrial activation

Abstract

We investigated the clinical and functional role of the miR-106a-363 cluster in adult acute myeloid leukemia (AML). LAML miRNA-Seq TCGA analyses revealed that high expression of miR-106a-363 cluster members was associated with inferior survival, and miR-106a-5p and miR-20b-5p levels were significantly elevated in patients with adverse risk AML. Overexpression of the miR-106a-363 cluster and its individual members in a murine AML model significantly accelerated leukemogenesis. Proteomics analysis of leukemic bone marrow cells from these models emphasized the deregulation of proteins involved in intracellular transport, protein complex organization and mitochondrial function, driven predominantly by miR-106a-5p. These molecular alterations suggested mitochondrial activation as a potential mechanism for the observed increase in leukemogenicity. High-resolution respirometry and STED microscopy confirmed that miR-106a-5p enhances mitochondrial respiratory activity and increases mitochondrial volume. These findings demonstrate that the miR-106a-363 cluster, and particularly miR-106a-5p, contribute to AML progression through modulation of mitochondrial function and deregulation of mitochondria-coordinated pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Association of the miR-106a-363 cluster miRNAs with disease outcomes and AML karyotype in the TCGA LAML dataset.
Fig. 2: miRNAs in the miR-106a-363 cluster are enriched in primitive hematopoietic cells, are downregulated during AML remission and exacerbate disease in the mouse model of leukemia.
Fig. 3: Proteomic analysis of the moribund mouse BM indicates diverse roles of individual miRNAs in the miR-106a-363 cluster in AML development.
Fig. 4: miR-106a overexpression leads to changes in mitochondrial structure and function.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thol F, Dohner H, Ganser A. How I treat refractory and relapsed acute myeloid leukemia. Blood. 2024;143:11–20.

    Article  CAS  PubMed  Google Scholar 

  3. Garciaz S, Hospital MA, Alary AS, Saillard C, Hicheri Y, Mohty B, et al. Azacitidine Plus Venetoclax for the Treatment of Relapsed and Newly Diagnosed Acute Myeloid Leukemia Patients. Cancers. 2022;14:2025.

  4. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24:1859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shivarov V, Dolnik A, Lang KM, Kronke J, Kuchenbauer F, Paschka P, et al. MicroRNA expression-based outcome prediction in acute myeloid leukemia: novel insights through cross-platform integrative analyses. Haematologica. 2016;101:e454–e6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abdellateif MS, Hassan NM, Kamel MM, El-Meligui YM. Bone marrow microRNA-34a is a good indicator for response to treatment in acute myeloid leukemia. Oncol Res. 2024;32:577–84.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhayadia R, Krowiorz K, Haetscher N, Jammal R, Emmrich S, Obulkasim A, et al. Endogenous Tumor Suppressor microRNA-193b: Therapeutic and Prognostic Value in Acute Myeloid Leukemia. J Clin Oncol. 2018;36:1007–16.

    Article  CAS  PubMed  Google Scholar 

  8. Krowiorz K, Ruschmann J, Lai C, Ngom M, Maetzig T, Martins V, et al. MiR-139-5p is a potent tumor suppressor in adult acute myeloid leukemia. Blood Cancer J. 2016;6:e508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Petriv OI, Kuchenbauer F, Delaney AD, Lecault V, White A, Kent D, et al. Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proc Natl Acad Sci USA. 2010;107:15443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Itkin T, Kumari A, Schneider E, Gur-Cohen S, Ludwig C, Brooks R, et al. MicroRNA-155 promotes G-CSF-induced mobilization of murine hematopoietic stem and progenitor cells via propagation of CXCL12 signaling. Leukemia. 2017;31:1247–50.

  11. Gentner B, Pochert N, Rouhi A, Boccalatte F, Plati T, Berg T, et al. MicroRNA-223 dose levels fine tune proliferation and differentiation in human cord blood progenitors and acute myeloid leukemia. Exp Hematol. 2015;43:858–68.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010;16:49–58.

    Article  CAS  PubMed  Google Scholar 

  13. Lechman ER, Gentner B, Ng SW, Schoof EM, van Galen P, Kennedy JA, et al. miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell. 2016;29:214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 2005;33:2697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khuu C, Utheim TP, Sehic A. The Three Paralogous MicroRNA Clusters in Development and Disease, miR-17-92, miR-106a-363, and miR-106b-25. Science. 2016;2016:1379643.

    Google Scholar 

  16. Li M, Zhou Y, Xia T, Zhou X, Huang Z, Zhang H, et al. Circulating microRNAs from the miR-106a–363 cluster on chromosome X as novel diagnostic biomarkers for breast cancer. Breast Cancer Res Treat. 2018;170:257–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. You F, Luan H, Sun D, Cui T, Ding P, Tang H, et al. miRNA-106a Promotes Breast Cancer Cell Proliferation, Clonogenicity, Migration, and Invasion Through Inhibiting Apoptosis and Chemosensitivity. DNA Cell Biol. 2019;38:198–207.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Y, Zhang Y, Li Y, Liu L, Li Z, Liu Y, et al. MicroRNA-106a-5p promotes the proliferation, autophagy and migration of lung adenocarcinoma cells by targeting LKB1/AMPK. Exp Ther Med. 2021;22:1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drobna M, Szarzyńska B, Jaksik R, Sędek Ł, Kuchmiy A, Taghon T, et al. hsa-miR-20b-5p and hsa-miR-363-3p Affect Expression of PTEN and BIM Tumor Suppressor Genes and Modulate Survival of T-ALL Cells In Vitro. Cells. 2020;9:1137.

  20. Lim EL, Trinh DL, Ries RE, Wang J, Gerbing RB, Ma Y, et al. MicroRNA Expression-Based Model Indicates Event-Free Survival in Pediatric Acute Myeloid Leukemia. J Clin Oncol. 2017;35:3964–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schneider E, Staffas A, Rohner L, Malmberg ED, Ashouri A, Krowiorz K, et al. MicroRNA-155 is a direct target of Meis1, but not a driver in acute myeloid leukemia. Haematologica. 2017;103:246–55.

  22. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 1998;17:3714–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maetzig T, Brugman MH, Bartels S, Heinz N, Kustikova OS, Modlich U, et al. Polyclonal fluctuation of lentiviral vector-transduced and expanded murine hematopoietic stem cells. Blood. 2011;117:3053–64.

    Article  CAS  PubMed  Google Scholar 

  24. Kuchenbauer F, Mah SM, Heuser M, McPherson A, Ruschmann J, Rouhi A, et al. Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. Blood. 2011;118:3350–8.

    Article  CAS  PubMed  Google Scholar 

  25. Schaefer PM, von Einem B, Walther P, Calzia E, von Arnim CA. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration. PLoS One. 2016;11:e0168157.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  Google Scholar 

  27. Bolouri H, Farrar JE, Triche T, Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24:103–12.

    Article  CAS  PubMed  Google Scholar 

  28. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71.

    Article  PubMed  Google Scholar 

  29. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  30. Hothorn T, Lausen B. On the exact distribution of maximally selected rank statistics. Computational Stat Data Anal. 2001;43:121–37.

    Article  Google Scholar 

  31. Schneider E, Pochert N, Ruess C, MacPhee L, Escano L, Miller C, et al. MicroRNA-708 is a novel regulator of the Hoxa9 program in myeloid cells. Leukemia. 2020;34:1253–65.

  32. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

    Article  CAS  PubMed  Google Scholar 

  33. Stubbins RJ, Francis A, Kuchenbauer F, Sanford D. Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology. Curr Oncol. 2022;29:6245–59.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stubbins RJ, Maksakova IA, Sanford DS, Rouhi A, Kuchenbauer F. Mitochondrial metabolism: powering new directions in acute myeloid leukemia. Leuk Lymphoma. 2021;62:2331–41.

    Article  CAS  PubMed  Google Scholar 

  35. Langer C, Rucker FG, Buske C, Dohner H, Kuchenbauer F. Targeted therapies through microRNAs: pulp or fiction? Ther Adv Hematol. 2012;3:97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Argiropoulos B, Palmqvist L, Yung E, Kuchenbauer F, Heuser M, Sly LM, et al. Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3. Exp Hematol. 2008;36:845–59.

    Article  CAS  PubMed  Google Scholar 

  37. Argiropoulos B, Yung E, Xiang P, Lo CY, Kuchenbauer F, Palmqvist L, et al. Linkage of the potent leukemogenic activity of Meis1 to cell-cycle entry and transcriptional regulation of cyclin D3. Blood. 2010;115:4071–82.

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Zhang X, Cao K, Zeng M, Fu X, Zheng A, et al. Cardiac disruption of SDHAF4-mediated mitochondrial complex II assembly promotes dilated cardiomyopathy. Nat Commun. 2022;13:3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li K, Song K, Hou Y, Tian Y, Wang H, Sun L, et al. AHNAK Contributes to Hepatocellular Carcinoma Growth by Interacting with IGF-1R. Molecules. 2022;27:8680.

  40. Jahic A, Iljazovic E, Hasic S, Arnautovic AC, Sabitovic D, Mesanovic S, et al. Prognostic Parameters of Acute Myeloid Leukaemia at Presentation. Med Arch. 2017;71:20–4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sasca D, Szybinski J, Schüler A, Shah V, Heidelberger J, Haehnel PS, et al. NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML. Blood. 2019;133:2305–19.

    Article  CAS  PubMed  Google Scholar 

  42. Convertini P, Todisco S, De Santis F, Pappalardo I, Iacobazzi D, Castiglione Morelli MA, et al. Transcriptional Regulation Factors of the Human Mitochondrial Aspartate/Glutamate Carrier Gene, Isoform 2 (SLC25A13): USF1 as Basal Factor and FOXA2 as Activator in Liver Cells. Int J Mol Sci. 2019;20:1888.

  43. Owusu-Ansah M, Guptan N, Alindogan D, Morizono M, Caldovic L. NAGS, CPS1, and SLC25A13 (Citrin) at the Crossroads of Arginine and Pyrimidines Metabolism in Tumor Cells. Int J Mol Sci. 2023;24:6754.

  44. Nappi L, Thi M, Lum A, Huntsman D, Eigl BJ, Martin C, et al. Developing a Highly Specific Biomarker for Germ Cell Malignancies: Plasma miR371 Expression Across the Germ Cell Malignancy Spectrum. J Clin Oncol. 2019;37:3090–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Edith Schneider for providing the Hoxa9/Meis1 cell line; the staff at Sahlgrenska University Hospital, especially Giti Shah Barkhordar, for assistance with biobanked samples; the Flow Core at BCCRC for cell sorting; Leonard Foster and Jason Rogalski at UBC’s Proteomics Core Facility for help with OCIAML3 proteomics; and Keng C. Chou, Department of Chemistry, UBC, for access to the STED microscope.

Funding

FK was supported by grants from Deutsche Krebshilfe grant 109420 (Max-Eder program); fellowship 2010/04 by the European Hematology Association; and by the Deutsche Forschungsgemeinschaft (DFG) (SFB 1074, project A5) and the Wilhelm Sander Stiftung (2015.153.1), Leukemia Lymphoma Society of Canada and Michael Smith Health Research BC. AR was supported by the DFG (SFB 1074, project A5) as well as the gender equality program by the DFG (SFB 1074, project Z2), a fellowship from the Canadian Institutes of Health Research, the Baustein Startförderung Program of the Medical Faculty, Ulm University and Faculty of Medicine New Faculty Research Award. LP was supported by grants from the Swedish Cancer Society (CAN2014/525), the Swedish Childhood Cancer Foundation (PR2014-0125), and Västra Götalandsregionen (ALFGBG-431881). NS, KK and SG were supported by the International Graduate School of Molecular Medicine, Ulm University, Germany. MRG and LA were supported by grants from the Canadian Institutes of Health Research (PJT-166196) and the Natural Sciences and Engineering Research Council of Canada (AWD-010517).

Author information

Authors and Affiliations

Authors

Contributions

NS and IAM performed experimental work, analyses, and prepared the manuscript. LE provided bioinformatic analysis. LA and MRG performed imaging. JB, LM, AC, DK, MY, KK, SG, NP, CR, RR, TM and SF provided experimental support. EC performed respirometry support. LP and SW performed proteomics. LF performed FACS and human assays. AR and FK conceived and designed the study and wrote the manuscript.

Corresponding author

Correspondence to Florian Kuchenbauer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. Animal experiments with H9M and H9M cells were approved by the state government of Tübingen, Germany. Animal experiments with OCIAML3 cells were performed according to animal research protocol # A19-0320 approved by the University of British Columbia Animal Care and Use Committee. All patients provided informed consent under protocols approved by the Regional Ethical Review Board in Gothenburg.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperb, N., Maksakova, I.A., Escano, L. et al. The proto-oncogenic miR-106a-363 cluster enhances adverse risk acute myeloid leukemia through mitochondrial activation. Leukemia 39, 1090–1101 (2025). https://doi.org/10.1038/s41375-025-02558-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-025-02558-x

Search

Quick links