Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

Towards methylation-based redefinition of TAL1 positive T-cell acute lymphoblastic leukaemia (T-ALL)

Abstract

TAL1 is one of the most frequently dysregulated oncogenes in T-cell Acute Lymphoblastic Leukaemia (T-ALL). However, the precise frequency and prognostic impact associated with its dysregulation remains unclear and is confounded by TAL1’s diverse dysregulation mechanisms. TAL1 dysregulation is detected by TAL1 transcript quantification, though this technique may be subject to interference by TAL1 transcripts deriving from residual haematological cells that physiologically express high levels of the gene. We hypothesised TAL1 DNA methylation could provide a more reliable biomarker than TAL1 transcript quantification alone. We extensively studied TAL1 dysregulation in a large adult and paediatric T-ALL cohort (n = 401) and designed a TAL1 specific MS-MLPA assay to determine methylation levels. Whereas monoallelic TAL1 + T-ALL had homogeneous gene expression profiles, never expressed other driver oncogenes and were TAL1 hypomethylated (methylation ratio <0.4), biallelic TAL1 + T-ALL were enriched in expression of other driver oncogenes (TLX1, TLX3, HOXA), and had heterogeneous transcriptomes and TAL1 methylation levels. In PDX analysis, monoallelic TAL1 expression was stable, contrary to biallelic expression which mostly derived from residual non-malignant haematopoietic cells. Importantly, we report 5 novel TAL1 dysregulation mechanisms using long-read nanopore and OGM analysis, and show that TAL1 hypomethylation identifies TAL1 dysregulation, and is associated with worse prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TAL1 + T-ALL are heterogeneous and the majority have unresolved TAL1 dysregulation mechanisms.
Fig. 2: Detection of structural variants affecting TAL1 using optical genome mapping (OGM).
Fig. 3: Monoallelic TAL1+ T-ALL have low TAL1 methylation.
Fig. 4: Monoallelic and Biallelic TAL1 + T-ALL have distinct gene expression profiles.
Fig. 5: TAL1 hypomethylation is a biomarker of monoallelic TAL1 dysregulation.
Fig. 6: TAL1 hypomethylation identifies a subgroup of T-ALL associated with poor prognosis.

Similar content being viewed by others

Data availability

For EPIC data, all microarray raw IDAT files have been deposited to Gene Expression Omnibus (GEO) under the accession number GSE147667 as detailed in [29].

References

  1. Green AR, Lints T, Visvader J, Harvey R, Begley CG. SCL is coexpressed with GATA-1 in hemopoietic cells but is also expressed in developing brain. Oncogene. 1992;7:653–60.

    CAS  PubMed  Google Scholar 

  2. Pulford K, Lecointe N, Leroy-Viard K, Jones M, Mathieu-Mahul D, Mason DY. Expression of TAL-1 proteins in human tissues. Blood. 1995;85:675–84.

    Article  CAS  PubMed  Google Scholar 

  3. Green AR, Salvaris E, Begley CG. Erythroid expression of the ‘helix-loop-helix’ gene, SCL. Oncogene. 1991;6:475–9.

    CAS  PubMed  Google Scholar 

  4. Mouthon M-A, Bernard O, Mitjavila M-T, Romeo P-H, Vainchenker W, Mathieu-Mahul D. Expression of tal-I and GATA-binding proteins during human hematopoiesis. Blood. 1993;81:647–55.

    Article  CAS  PubMed  Google Scholar 

  5. Herblot S, Steff A-M, Hugo P, Aplan PD, Hoang T. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-Tα chain expression. Nat Immunol. 2000;1:138–44.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Payne KJ, Zhu Y, Price MA, Parrish YK, Zielinska E, et al. SCL expression at critical points in human hematopoietic lineage commitment. Stem Cells. 2005;23:852–60.

    Article  CAS  PubMed  Google Scholar 

  7. Navarro J-M, Touzart A, Pradel LC, Loosveld M, Koubi M, Fenouil R, et al. Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nat Commun. 2015;6:6094.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.

    Article  CAS  PubMed  Google Scholar 

  9. Soulier J, Clappier E, Cayuela JM, Regnault A, García-Peydró M, Dombret H, et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005;106:274–86.

    Article  CAS  PubMed  Google Scholar 

  10. Homminga I, Vuerhard MJ, Langerak AW, Buijs-Gladdines J, Pieters R, Meijerink JPP. Characterization of a pediatric T-cell acute lymphoblastic leukemia patient with simultaneous LYL1 and LMO2 rearrangements. Haematologica. 2012;97:258–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delabesse E, Bernard M, Meyer V, Smit L, Pulford K, Cayuela J-M, et al. TAL1 expression does not occur in the majority of T-ALL blasts. Br J Haematol. 1998;102:449–57.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA, et al. Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood. 2004. https://doi.org/10.1182/blood-2003-07-2577.

  13. Bash RO, Hall S, Timmons CF, Crist WM, Amylon M, Smith RG, et al. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. Blood. 1995;86:666–76.

    Article  CAS  PubMed  Google Scholar 

  14. van Grotel M, Meijerink JP, Beverloo HB, Langerak AW, Buys-Gladdines JG, Schneider P, et al. The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica. 2006;91:1212–21.

    PubMed  Google Scholar 

  15. Bash BR, Hall S, Timmons CF, Crist WM, Amylon M, Smith RG, et al. Does activation of the TALl gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? a pediatric oncology group study. Blood J. 1995;2:666–76.

    Article  Google Scholar 

  16. Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G, et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J. 1990;9:3343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J, et al. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA. 1989;86:2031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cauwelier B, Dastugue N, Cools J, Poppe B, Herens C, De Paepe A, et al. Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCRβ locus rearrangements and putative new T-cell oncogenes. Leukemia. 2006;20:1238–44.

    Article  CAS  PubMed  Google Scholar 

  19. Le Noir S, Ben Abdelali R, Lelorch M, Bergeron J, Sungalee S, Payet-Bornet D, et al. Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood. 2012;120:3298–309.

    Article  PubMed  Google Scholar 

  20. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science (80-). 2014;346:1373–7.

    Article  CAS  Google Scholar 

  21. Smith C, Goyal A, Weichenhan D, Allemand E, Mayakonda A, Toprak U, et al. TAL1 activation in T-Cell acute lymphoblastic leukemia: A novel oncogenic 3’ neoenhancer. 2023 https://doi.org/10.3324/haematol.2022.281583.

  22. Liu Y, Li C, Shen S, Chen X, Szlachta K, Edmonson MN, et al. Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X. Nat Genet. 2020;52:811–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borssén M, Palmqvist L, Karrman K, Abrahamsson J, Behrendtz M, Heldrup J, et al. Promoter DNA Methylation Pattern Identifies Prognostic Subgroups in Childhood T-Cell Acute Lymphoblastic Leukemia. PLoS One. 2013;8:e65373.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Borssén M, Haider Z, Landfors M, Norén-Nyström U, Schmiegelow K, Åsberg AE, et al. DNA methylation adds prognostic value to minimal residual disease status in pediatric T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 2016;63:1185–92.

    Article  PubMed  Google Scholar 

  25. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains. Nat Genet. 2012;44:40–46.

    Article  CAS  Google Scholar 

  26. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al. Induction of Tumors in Mice by Genomic Hypomethylation. Science (80-). 2003;300:489–92.

    Article  CAS  Google Scholar 

  27. Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 2012;22:246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DTW, Kool M, et al. Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell. 2013;24:660–72.

    Article  CAS  PubMed  Google Scholar 

  29. Touzart A, Mayakonda A, Smith C, Hey J, Toth R, Cieslak A, et al. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med. 2021;13:1–16.

    Article  Google Scholar 

  30. Petit A, Trinquand A, Chevret S, Ballerini P, Cayuela J-M, Grardel N, et al. Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia. Blood. 2018;131:289–300.

    Article  CAS  PubMed  Google Scholar 

  31. Asnafi V, Beldjord K, Boulanger E, Comba B, Le Tutour P, Estienne M-H, et al. Analysis of TCR, pTα, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood. 2003;101:2693–703.

    Article  CAS  PubMed  Google Scholar 

  32. Bergeron J, Clappier E, Radford I, Buzyn A, Millien C, Soler G, et al. Prognostic and oncogenic relevance of TLX1/HOX11 expression level in T-ALLs. Blood. 2007;110:2324–30.

    Article  CAS  PubMed  Google Scholar 

  33. Asnafi V, Buzyn A, Le Noir S, Baleydier F, Simon A, Beldjord K, et al. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): A Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood. 2009;113:3918–24.

    Article  CAS  PubMed  Google Scholar 

  34. Bond J, Marchand T, Touzart A, Cieslak A, Trinquand A, Sutton L, et al. An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. Haematologica. 2016;101:732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeuken JWM, Cornelissen SJB, Vriezen M, Dekkers MMG, Errami A, Sijben A, et al. MS-MLPA: an attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab Investig. 2007;87:1055–65.

    Article  CAS  PubMed  Google Scholar 

  36. Balducci E, Kaltenbach S, Villarese P, Duroyon E, Zalmai L, Friedrich C, et al. Optical genome mapping refines cytogenetic diagnostics, prognostic stratification and provides new molecular insights in adult MDS/AML patients. Blood Cancer J. 2022;12:126.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bornschein S, Demeyer S, Stirparo R, Gielen O, Vicente C, Geerdens E, et al. Defining the molecular basis of oncogenic cooperation between TAL1 expression and Pten deletion in T-ALL using a novel pro-T-cell model system. Leukemia. 2018;32:941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Allen JD, Lints T, Jenkins NA, Copeland NG, Strasser A, Harvey RP, et al. Novel murine homeo box gene on chromosome 1 expressed in specific hematopoietic lineages and during embryogenesis. Genes Dev. 1991;5:509–20.

    Article  CAS  PubMed  Google Scholar 

  40. Malumbres R, Fresquet V, Roman-Gomez J, Bobadilla M, Robles EF, Altobelli GG, et al. LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome. Haematologica. 2011;96:980–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kikuchi A, Hayashi Y, Kobayashi S, Hanada R, Moriwaki K, Yamamoto K, et al. Clinical significance of TAL1 gene alteration in childhood T-cell acute lymphoblastic leukemia and lymphoma. Leukemia. 1993;7:933–8.

    CAS  PubMed  Google Scholar 

  42. Wang D, Zhu G, Wang N, Zhou X, Yang Y, Zhou S, et al. SIL-TAL1 rearrangement is related with poor outcome: a study from a Chinese institution. PLoS One. 2013; 8. https://doi.org/10.1371/journal.pone.0073865.

  43. D’Angiò M, Valsecchi MG, Testi AM, Conter V, Nunes V, Parasole R, et al. Clinical features and outcome of SIL/TAL1-positive T-cell acute lymphoblastic leukemia in children and adolescents: a 10-year experience of the AIEOP group. Haematologica. 2015;100:e10–e13.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci. 2017;114:7414 LP–7419.

    Article  Google Scholar 

  45. Nygren AOH, Ameziane N, Duarte HMB, Vijzelaar RNCP, Waisfisz Q, Hess CJ, et al. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 2005;33:e128.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all participants in the GRAALL-2003 and GRAALL-2005 study groups, the SFCE and the investigators of the 16 SFCE centres involved in collection and provision of data and patient samples, and V. Lheritier for collection of clinical data.

Funding

The GRAALL was supported by grants P0200701 and P030425/AOM03081 from the Programme Hospitalier de Recherche Clinique, Ministère de l’Emploi et de la Solidarité, France and the Swiss Federal Government in Switzerland. Samples were collected and processed by the AP-HP “Direction de Recherche Clinique” Tumour Bank at Necker-Enfants Malades. We would also like to thank La Fondation pour la Recherche Médicale for their support through the grant FDT202012010638 which was awarded to CS and “La Ligue Contre le Cancer” for supporting MS.

Author information

Authors and Affiliations

Authors

Contributions

CS designed and carried out experiments, visualised data, and wrote the original manuscript, GC carried out RNA-seq bioinformatic analysis and visualised the data. MS analysed and visualised clinical data. EB analysed and visualised OGM data. TS processed, analysed, and visualised WGS data. GA analysed and visualised NGS data. MLL, ML, and ALN carried out experiments. VA and AT offered expertise and supervised the research. CS, GC, MS, EB, TS, GA, AC, MC, MLL, AM, CP, ALN, ML, NI, HD, FH, AB, EM, AP, NB, VA, and AT all critically reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Vahid Asnafi or Aurore Touzart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Both adult and paediatric trials included in this study were conducted in accordance with the Declaration of Helsinki and approved by local and multicentre research ethical committees. Consent was obtained from all patients at trial entry. Animal experimentation was evaluated and approved by the Institute’s ethics committee and the Ministère de l’enseignement supérieur de la recherche et de l’innovation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, C., Charbonnier, G., Simonin, M. et al. Towards methylation-based redefinition of TAL1 positive T-cell acute lymphoblastic leukaemia (T-ALL). Leukemia 39, 2344–2354 (2025). https://doi.org/10.1038/s41375-025-02714-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-025-02714-3

Search

Quick links