Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Longitudinal single-cell analysis reveals treatment-resistant stem and mast cells with potential treatments for pediatric AML

A Correction to this article was published on 19 September 2025

This article has been updated

Abstract

Pediatric acute myeloid leukemia (pAML) is a heterogeneous malignancy driven by diverse cytogenetic mutations. While identification of cytogenetic lesions improved risk stratification, prognostication remains inadequate with 30% of standard-risk patients experiencing relapse within 5 years. To deeply characterize pAML heterogeneity and identify poor outcome-associated blast cell profiles, we performed an analysis on 708,285 cells from 164 bone marrow biopsies of 95 patients and 11 healthy controls. The longitudinal analysis on cell abundances at the time of disease diagnosis, end of induction, and relapse identified treatment resistant stem-like blast cells specific to RUNX1::RUNX1T1, FLT3-ITD, and CBFB::MYH11 patients that are associated with poor outcomes. Treatment resistant blast cells from RUNX1::RUNX1T1 were found to associate with T cell exhaustion, while those from FLT-ITD utilized enriched antioxidant metabolism to persist through treatment. Interestingly, the analysis also identified novel mast cell-like pAML associated with treatment resistance and poor outcomes. Deconvolution of ex vivo treatment data and subsequent in vitro validation identified bortezomib (RUNX1), ponatinib, and venetoclax (FLT3) as specifically potent against treatment resistant blasts from the respective cytogenetic groups. Our findings indicate immature and mature pAML subtypes are promising biomarkers for enhanced patient risk stratification and identifies targeted agents to increase their clearance after treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic for analysis of pediatric acute myeloid leukemia datasets to identify and characterize high-risk, treatment-resistant subtypes.
Fig. 2: Malignant blast cell identification.
Fig. 3: Analysis of malignant cells from longitudinal diagnosis, end-of-induction, and relapse samples reveals treatment-resistant cell types.
Fig. 4: High-risk, treatment-resistant cells in RUNX1 pediatric acute myeloid leukemia (pAML) are proliferative, anti-apoptotic, and immune effectors.
Fig. 5: High-risk, treatment-resistant hematopoietic stem cell (HSC)-like cells in RUNX1 patients promote an inflammatory, exhausted immune microenvironment.
Fig. 6: High-risk, treatment-resistant HSC-like cells in FLT3 patients express leukemic stem cell markers and utilize antioxidant metabolism.
Fig. 7: Core binding factor (CBF) mutated pAML patients depict elevated mast cells associated with poor outcomes.

Similar content being viewed by others

Data availability

The data used in this manuscript are available in the publicly available Gene Expression Omnibus (NCBI GEO) under accession numbers GSE235923, GSE235063, GSE154109, GSE185381, and ScPCA (https://scpca.alexslemonade.org/). Code used in this manuscript will be made available upon reasonable request to the corresponding author.

Code availability

The data used in this manuscript are available in the publicly available Gene Expression Omnibus (NCBI GEO) under accession numbers GSE235923, GSE235063, GSE154109, GSE185381, and ScPCA (https://scpca.alexslemonade.org/). Code used in this manuscript will be made available upon reasonable request to the corresponding author.

Change history

References

  1. Bolouri H, Farrar JE, Triche T, Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24:103–12.

    Article  CAS  PubMed  Google Scholar 

  2. Conneely SE, Rau RE. The genomics of acute myeloid leukemia in children. Cancer Metastasis Rev. 2020;39:189–209.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lew-Derivry L, Marceau-Renaut A, Fenwarth L, Cuccuini W, Ballerini P, Ferreboeuf M, et al. Prognostic impact of RUNX1 mutations and deletions in pediatric acute myeloid leukemia: results from the French ELAM02 study group. Leukemia. 2023;37:1723–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Conneely SE, Stevens AM. Acute myeloid leukemia in children: emerging paradigms in genetics and new approaches to therapy. Curr Oncol Rep. 2021;23:16.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Qiu K, Liao X, Li Y, Huang K, Xu H, Fang J, et al. Outcome and prognostic factors of CBF pediatric AML patients with t(8;21) differ from patients with inv(16). BMC Cancer. 2023;23:476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lasry A, Nadorp B, Fornerod M, Nicolet D, Wu H, Walker CJ et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat Cancer. 2023;4:27–42.

  7. Bailur JK, McCachren SS, Pendleton K, Vasquez JC, Lim HS, Duffy A, et al. Risk-associated alterations in marrow T cells in pediatric leukemia. JCI Insight. 2020;5:e140179.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lambo S, Trinh DL, Ries RE, Jin D, Setiadi A, Ng M, et al. A longitudinal single-cell atlas of treatment response in pediatric AML. Cancer Cell. 2023;41:2117–2135.e12.

    Article  CAS  PubMed  Google Scholar 

  9. Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, et al. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat Commun. 2023;14:6209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S, et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res. 2005;11:6520–7.

    Article  PubMed  Google Scholar 

  11. Elsayed AH, Rafiee R, Cao X, Raimondi S, Downing JR, Ribeiro R, et al. A six-gene leukemic stem cell score identifies high risk pediatric acute myeloid leukemia. Leukemia. 2020;34:735–45.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Jiang S, He F, Tian Y, Hu H, Gao L, et al. Single-cell transcriptomics reveals multiple chemoresistant properties in leukemic stem and progenitor cells in pediatric AML. Genome Biol. 2023;24:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hay SB, Ferchen K, Chetal K, Grimes HL, Salomonis N. The Human Cell Atlas bone marrow single-cell interactive web portal. Exp Hematol. 2018;68:51–61.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pullarkat ST, Pullarkat V, Lagoo A, Brynes R, Weiss LM, Bedell V, et al. Characterization of bone marrow mast cells in acute myeloid leukemia with t(8;21) (q22;q22); RUNX1-RUNX1T1. Leuk Res. 2013;37:1572–5.

    Article  CAS  PubMed  Google Scholar 

  15. Cook JA, Lott L, Perry J, Nalla A, Xu D, Hudson CA, et al. Residual mast cells can explain persistent molecular positivity in difference from normal flow cytometric-defined MRD negative core binding factor AML. Blood. 2023;142:426–426.

    Article  Google Scholar 

  16. Mahadeo KM, Wolgast L, McMahon C, Cole PD. Systemic mastocytosis in a child with t(8;21) acute myeloid leukemia. Pediatr Blood Cancer. 2011;57:684–7.

    Article  PubMed  Google Scholar 

  17. Sharma S, Harbhajanka A, Jain A, Seth A. Systemic mastocytosis with an associated non mast cell lineage clonal hematological disease in a child. Indian J Pathol Microbiol. 2011;54:854–6.

    Article  PubMed  Google Scholar 

  18. Rabade N, Tembhare P, Patkar N, Amare P, Arora B, Subramanian P, et al. Childhood systemic mastocytosis associated with t (8; 21) (q22; q22) acute myeloid leukemia. Indian J Pathol Microbiol. 2016;59:407.

    Article  PubMed  Google Scholar 

  19. Yabe M, Masukawa A, Kato S, Yabe H, Nakamura N, Matsushita H. Systemic mastocytosis associated with t(8;21) acute myeloid leukemia in a child: Detection of the D816A mutation of KIT. Pediatr Blood Cancer. 2012;59:1313–6.

    Article  PubMed  Google Scholar 

  20. Intzes S, Wiersma S, Meyerson HJ. Myelomastocytic leukemia with t(8;21) in a 3-year-old child. J Pediatr Hematol Oncol. 2011;33:e372–5.

    Article  PubMed  Google Scholar 

  21. Gogia A, Sharawat SK, Kumar R, Sarkar C, Bakhshi S. Systemic mastocytosis associated with childhood acute myeloid leukemia. J Pediatr Hematol Oncol. 2013;35:163–4.

    Article  PubMed  Google Scholar 

  22. Sheikh IN, AlQahtani S, Yin CC, McCall D, Cuglievan B, Ragoonanan D, et al. KIT ‐mutated pediatric core‐binding factor systemic mastocytosis‐acute myeloid leukemia treated with avapritinib and decitabine. Pediatr Blood Cancer. 2024;71:e30898.

    Article  CAS  PubMed  Google Scholar 

  23. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8:329–337.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ticle T, Tirosh I, Georgescu C, Brown M, Haas B. inferCNV of the Trinity CTAT Project. 2019. https://github.com/broadinstitute/inferCNV.

  26. Yuen K, Liu Y, Zhou Y, Wang Y, Zhou D, Fang J, et al. Mutational landscape and clinical outcome of pediatric acute myeloid leukemia with 11q23/ KMT2A rearrangements. Cancer Med. 2023;12:1418–30.

    Article  CAS  PubMed  Google Scholar 

  27. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang F, Wang X-Y, Wang M-Y, Mao Y, Miao X-L, Wu C-Y, et al. An immune checkpoint-related gene signature for predicting survival of pediatric acute myeloid leukemia. J Oncol. 2021;2021:1–14.

    Article  CAS  Google Scholar 

  29. Gao Y, Zhou J-F, Mao J-Y, Jiang L, Li X-P. Identification of the thyrotropin-releasing hormone (TRH) as a novel biomarker in the prognosis for acute myeloid leukemia. Biomolecules. 2022;12:1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng Z, Dai Y, Pang Y, Jiao Y, Liu Y, Cui L, et al. High EGFL7 expression may predict poor prognosis in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Cancer Biol Ther. 2019;20:1314–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langer C, Radmacher MD, Ruppert AS, Whitman SP, Paschka P, Mrózek K, et al. High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study. Blood. 2008;111:5371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T. Canonical and non-canonical aspects of JAK–STAT signaling: lessons from interferons for cytokine responses. Front Immunol. 2017;8:29.

  33. Piesche M, Hildebrandt Y, Chapuy B, Wulf GG, Trümper L, Schroers R. Characterization of HLA-DR-restricted T-cell epitopes derived from human proteinase 3. Vaccine. 2009;27:4718–23.

    Article  CAS  PubMed  Google Scholar 

  34. Papaioannou D, Shen C, Nicolet D, McNeil B, Bill M, Karunasiri M et al. Prognostic and biological significance of the proangiogenic factor EGFL7 in acute myeloid leukemia. Proc Natl Acad Sci. 2017;114:E4641–7.

  35. Nicolussi A, D’Inzeo S, Capalbo C, Giannini G, Coppa A. The role of peroxiredoxins in cancer. Mol Clin Oncol. 2017;6:139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao Y, Chen X, Chen J, Qi X. Decoding Connectivity Map-based drug repurposing for oncotherapy. Brief Bioinform. 2023;24:bbad142.

    Article  PubMed  Google Scholar 

  37. Guo Z, Wang A, Zhang W, Levit M, Gao Q, Barberis C, et al. PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood. 2014;124:1777–89.

    Article  CAS  PubMed  Google Scholar 

  38. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang L, Dong Z-R, Pan L, Luo J-M, Xu S-R. Expression of midkine in patients with acute myeloid leukemia and its significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2006;14:442–5.

    CAS  PubMed  Google Scholar 

  40. Tang Y, Kwiatkowski DJ, Henske EP. Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment. Nat Commun. 2022;13:5018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo X, Pan Y, Xiong M, Sanapala S, Anastasaki C, Cobb O, et al. Midkine activation of CD8+ T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat Commun. 2020;11:2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morsink LM, Walter RB, Ossenkoppele GJ. Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia. Blood Rev. 2019;34:26–33.

    Article  CAS  PubMed  Google Scholar 

  43. Yan H, He D, Huang X, Zhang E, Chen Q, Xu R et al. Role of interleukin‑32 in cancer biology. Oncol Lett. 2018:41–7.

  44. Shim S, Lee S, Hisham Y, Kim S, Nguyen TT, Taitt AS, et al. A paradoxical effect of interleukin-32 isoforms on cancer. Front Immunol. 2022;13:837590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang M, Lin C, Wang Y, Chen K, Han Y, Zhang H, et al. Cytokine storm promoting T cell exhaustion in severe COVID-19 revealed by single cell sequencing data analysis. Precis Clin Med. 2022;5:pbac014.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Depreter B, Weening KE, Vandepoele K, Essand M, De Moerloose B, Themeli M, et al. TARP is an immunotherapeutic target in acute myeloid leukemia expressed in the leukemic stem cell compartment. Haematologica. 2020;105:1306–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pei S, Minhajuddin M, Callahan KP, Balys M, Ashton JM, Neering SJ, et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013;288:33542–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGuirk S, Audet-Delage Y, Annis MG, Xue Y, Vernier M, Zhao K, et al. Resistance to different anthracycline chemotherapeutics elicits distinct and actionable primary metabolic dependencies in breast cancer. eLife. 2021;10:e65150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nair S, Singh SV, Samy TSA, Krishan A. Anthracycline resistance in murine leukemic P388 CELLS. Biochem Pharm. 1990;39:723–8.

    Article  CAS  PubMed  Google Scholar 

  50. Chaudhuri J, Si K, Maitra U. Function of eukaryotic translation initiation factor 1A (eIF1A) (formerly called eIF-4C) in initiation of protein synthesis. J Biol Chem. 1997;272:7883–91.

    Article  CAS  PubMed  Google Scholar 

  51. Yang X, Wan M, Yu F, Wu X. Histone methyltransferase EZH2 epigenetically affects CCNA1 expression in acute myeloid leukemia. Cell Sig. 2021;87:110144.

    Article  CAS  Google Scholar 

  52. Cui B, Ai L, Lei M, Duan Y, Tang C, Zhang J, et al. Single-cell epigenetic and clonal analysis decodes disease progression in pediatric acute myeloid leukemia. Blood. 2025;145:1211–24.

    Article  CAS  PubMed  Google Scholar 

  53. Berastegui N, Ainciburu M, Romero JP, Garcia-Olloqui P, Alfonso-Pierola A, Philippe C, et al. The transcription factor DDIT3 is a potential driver of dyserythropoiesis in myelodysplastic syndromes. Nat Commun. 2022;13:7619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gupta VA, Barwick BG, Matulis SM, Shirasaki R, Jaye DL, Keats JJ, et al. Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression. Blood. 2021;137:3604–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Depreter B, De Moerloose B, Vandepoele K, Uyttebroeck A, Van Damme A, Denys B, et al. Clinical significance of TARP expression in pediatric acute myeloid leukemia. HemaSphere. 2020;4:e346.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fortier JM, Payton JE, Cahan P, Ley TJ, Walter MJ, Graubert TA. POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature. Leukemia. 2010;24:950–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ross ME, Mahfouz R, Onciu M, Liu H-C, Zhou X, Song G, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood. 2004;104:3679–87.

    Article  CAS  PubMed  Google Scholar 

  58. Chatterjee A, Ghosh J, Kapur R. Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder. Oncotarget. 2015;6:18250–64.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhou Y, Zhang Y, Chen B, Dong Y, Zhang Y, Mao B, et al. Overexpression of GATA2 enhances development and maintenance of human embryonic stem cell-derived hematopoietic stem cell-like progenitors. Stem Cell Rep. 2019;13:31–47.

    Article  CAS  Google Scholar 

  60. Vicente C, Vazquez I, Conchillo A, García-Sánchez MA, Marcotegui N, Fuster O, et al. Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities. Leukemia. 2012;26:550–4.

    Article  CAS  PubMed  Google Scholar 

  61. Kellaway SG, Potluri S, Keane P, Blair HJ, Ames L, Worker A, et al. Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth. Nat Commun. 2024;15:1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luo Y, Xu Y, Li X, Shi X, Huang P, Chen Y, et al. A Prognostic Model of Seven Immune Genes to Predict Overall Survival in Childhood Acute Myeloid Leukemia. BioMed Res Int. 2022;2022:1–28.

    Article  Google Scholar 

  63. Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol. 2022;13:1000996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weidenaar AC, Ter Elst A, Koopmans-Klein G, Rosati S, Den Dunnen WFA, Meeuwsen-de Boer T, et al. High Acute Myeloid Leukemia derived VEGFA levels are associated with a specific vascular morphology in the leukemic bone marrow. Cell Oncol. 2011;34:289–96.

    Article  CAS  Google Scholar 

  65. Weidenaar AC, Elst AT, De Jonge H-M, Boer TM, Kamps WA, De Bont ES. The role of VEGFA in malignant progression in AML. Blood. 2008;112:203–203.

    Article  Google Scholar 

  66. Zwaan CM, Kolb EA, Reinhardt D, Abrahamsson J, Adachi S, Aplenc R, et al. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J Clin Oncol. 2015;33:2949–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Petersen MA, Rosenberg CA, Bill M, Enemark MB, Rahbek O, Roug AS, et al. Proteomic profiling identifies specific leukemic stem cell-associated protein expression patterns in pediatric AML patients. Cancers. 2022;14:3567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang BJ, Smith JL, Farrar JE, Wang Y-C, Umeda M, Ries RE, et al. Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia. Nat Commun. 2022;13:5487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi Y, He Z, Bei L, Tao H, Ding B, Tao S, et al. High expression of TARP correlates with inferior FLT3 mutations in non-adolescents and young adults with acute myeloid leukaemia. Hematology. 2021;26:380–7.

    Article  CAS  PubMed  Google Scholar 

  70. Millot F, Suttorp M, Versluys AB, Kalwak K, Nelken B, Ducassou S, et al. Ponatinib in childhood Philadelphia chromosome–positive leukaemias: an international registry of childhood chronic myeloid leukaemia study. Eur J Cancer. 2020;136:107–12.

    Article  CAS  PubMed  Google Scholar 

  71. Rossoff J, Huynh V, Rau RE, Macy ME, Sulis ML, Schultz KR, et al. Experience with ponatinib in paediatric patients with leukaemia. Br J Haematol. 2020;189:363–8.

    Article  CAS  PubMed  Google Scholar 

  72. Trabal A, Gibson A, He J, McCall D, Roth M, Nuñez C, et al. Venetoclax for acute myeloid leukemia in pediatric patients: a Texas medical center experience. Cancers. 2023;15:1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karol SE, Alexander TB, Budhraja A, Pounds SB, Canavera K, Wang L, et al. Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia: a phase 1, dose-escalation study. Lancet Oncol. 2020;21:551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aplenc R, Meshinchi S, Sung L, Alonzo T, Choi J, Fisher B, et al. Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: a report from the Children’s Oncology Group. Haematologica. 2020;105:1879–86.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gadage V, Galani K, Kadam Amare P, Mittal N. Systemic mastocytosis with associated acute myeloid leukemia with t (8; 21) (q22; q22). Indian J Pathol Microbiol. 2012;55:409.

    Article  CAS  PubMed  Google Scholar 

  76. Zheng Y, Nong L, Liang L, Wang W, Li T. De novo mast cell leukemia without CD25 expression and KIT mutations: a rare case report in a 13-year-old child. Diagn Pathol. 2018;13:14.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Won D, Chi H-S, Shim H, Jang S, Park C-J, Lee J-H. The prognostic impact of c-KIT mutation in systemic mastocytosis associated with acute myeloid leukaemia patients. Leuk Res. 2013;37:883–8.

    Article  CAS  PubMed  Google Scholar 

  78. Sperr WR, Mitterbauer M, Mitterbauer G, Kundi M, Jäger U, Lechner K, et al. Quantitation of minimal residual disease in acute myeloid leukemia by tryptase monitoring identifies a group of patients with a high risk of relapse. Clin Cancer Res. 2005;11:6536–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study is supported through translational award from the CURE Childhood Foundation (Ma.B.) and Emory startup funds (Ma.B.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization DO, MoB, HM, MM, ADJG, DD, KEF, FC, WP, SS, SJ, DG, SB, MaB; Methodology DO, HM, MM, ADJG, DD, DG, MaB; Formal Analysis DO; Investigation MoB, ADJG; Data Curation DO, HM; Writing – Original Draft DO; Writing – Reviewing & Editing DO, MoB, HM, MM, ADJG, DD, KF, FC, WP, SS, SJ, DG, SB, MaB; Visualization DO, MoB; Supervision MaB; Funding Acquisition MaB.

Corresponding author

Correspondence to Manoj Bhasin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods in this study were performed in accordance with the relevant guidelines and regulations. Single-cell RNA sequencing data sets were procured from publicly available repositories. Informed consent and institutional review board approval were obtained in the respective studies [6,7,8,9]. Ex vivo drug sensitivity studies were performed under informed consent and institutional review board approval (Emory University IRB #00034535).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the author’s name Mojtaba Bakhtiari was incorrectly written as Mojtaba Bakhtia. The original article has been corrected.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohlstrom, D., Bakhtiari, M., Mumme, H. et al. Longitudinal single-cell analysis reveals treatment-resistant stem and mast cells with potential treatments for pediatric AML. Leukemia (2025). https://doi.org/10.1038/s41375-025-02748-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41375-025-02748-7

Search

Quick links