Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disrupted long-range gene regulations elucidate shared tissue-specific mechanisms of neuropsychiatric disorders

Abstract

Neurological and psychiatric disorders have overlapped phenotypic profiles, but the underlying tissue-specific functional processes remain largely unknown. In this study, we explore the shared tissue-specificity among 14 neuropsychiatric disorders through the disrupted long-range gene regulations by GWAS-identified regulatory SNPs. Through Hi-C interactions, averagely 38.0% and 17.2% of the intergenic regulatory SNPs can be linked to target protein-coding genes in brain and non-brain tissues, respectively. Interestingly, while the regulatory target genes in the brain tend to enrich in nervous system development related processes, those in the non-brain tissues are inclined to interfere with synapse and neuroinflammation related processes. Compared to psychiatric disorders, neurological disorders present more prominently the neuroinflammatory processes in both brain and non-brain tissues, indicating an intrinsic difference in mechanisms. Through tissue-specific gene regulatory networks, we then constructed disorder similarity networks in two brain and three non-brain tissues, highlighting both known disorder clusters (e.g. the neurodevelopmental disorders) and unexpected disorder clusters (e.g. Parkinson’s disease is consistently grouped with psychiatric disorders). We showcase the potential pharmaceutical applications of the small bowel and its disorder clusters, illustrated by the known drug targets NR1I3 and NFACT1, and their small bowel-specific regulatory modules. In conclusion, disrupted long-range gene regulations in both brain and non-brain tissues contribute to the similarity among distinct clusters of neuropsychiatric disorders, and the tissue-specifically shared functions and regulators for disease clusters may provide insights for future therapeutic investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart and overview of the regulatory potential of intergenic daSNPs.
Fig. 2: Regulatory target genes of intergenic daSNPs across different tissue types.
Fig. 3: The disorder similarity network and potentially shared regulators.

Similar content being viewed by others

Data availability

The original public datasets were downloaded as described in “Materials and Methods”. The processed datasets supporting the conclusions of this article are included within the article and its supplementary files (supplementary information is available at MP’s website). All codes for the analyses are available upon request, and essential codes are available at https://github.com/JChen-GitHub/daSNP_interpretation_np.

Code availability

The codes are publicly available at https://github.com/JChen-GitHub/daSNP_interpretation_np.

References

  1. Group GBDNDC. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017;16:877–97.

    Article  Google Scholar 

  2. Sullivan PF, Geschwind DH. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell. 2019;177:162–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–D12. D1.

    Article  CAS  PubMed  Google Scholar 

  4. Sullivan PF. The psychiatric GWAS consortium: big science comes to psychiatry. Neuron. 2010;68:182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.

    Article  CAS  Google Scholar 

  6. Cross-Disorder Group of the Psychiatric Genomics Consortium. Electronic address pmhe, Cross-Disorder Group of the Psychiatric Genomics C. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell. 2019;179:1469–82 e11.

    Article  PubMed Central  CAS  Google Scholar 

  7. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao X, Chang H, Li M. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies. Mol Psychiatry. 2017;22:497–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Tian W. Explaining the disease phenotype of intergenic SNP through predicted long range regulation. Nucleic Acids Res. 2016;44:8641–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362:6420.

    Article  Google Scholar 

  11. Song M, Yang X, Ren X, Maliskova L, Li B, Jones IR, et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat Genet. 2019;51:1252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gamazon ER, Zwinderman AH, Cox NJ, Denys D, Derks EM. Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits. Nat Genet. 2019;51:933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu P, Wu L, Peng G, Han Y, Tang R, Ge J, et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun. 2019;80:633–43.

    Article  PubMed  Google Scholar 

  14. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res. 2018;197:470–7.

    Article  PubMed  Google Scholar 

  15. Sey NYA, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci. 2020;23:583–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 2010;26:976–8.

    Article  CAS  PubMed  Google Scholar 

  18. Yang A, Chen J, Zhao XM. nMAGMA: a network-enhanced method for inferring risk genes from GWAS summary statistics and its application to schizophrenia. Brief Bioinform. 2020;22:bbaa298.

    Article  CAS  Google Scholar 

  19. Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun. 2018;9:1825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sullivan PF, Posthuma D. Biological pathways and networks implicated in psychiatric disorders. Curr Opin Behav Sci. 2015;2:58–68.

    Article  Google Scholar 

  21. Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci. 2018;12:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Taber KH, Salpekar J, Wong AH, Hurley RA. Developmental origins for neuropsychiatric illness. J Neuropsychiatry Clin Neurosci. 2011;23:1–5.

    Article  PubMed  Google Scholar 

  23. Morand-Beaulieu S, Leclerc JB, Valois P, Lavoie ME, O’Connor KP, Gauthier B. A Review of the neuropsychological dimensions of Tourette syndrome. Brain Sci. 2017;7:106.

    Article  PubMed Central  Google Scholar 

  24. Calabresi P, Mercuri NB, Di, Filippo M. Synaptic plasticity, dopamine and Parkinson’s disease: one step ahead. Brain 2009;132:285–7. Pt 2

    Article  PubMed  Google Scholar 

  25. Chaudhari N, Pereira E, Roper SD. Taste receptors for umami: the case for multiple receptors. Am J Clin Nutr. 2009;90:738S–42S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spampinato SF, Copani A, Nicoletti F, Sortino MA, Caraci F. Metabotropic Glutamate Receptors in Glial Cells: A New Potential Target for Neuroprotection? Front Mol Neurosci. 2018;11:414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vinson PN, Conn PJ. Metabotropic glutamate receptors as therapeutic targets for schizophrenia. Neuropharmacology 2012;62:1461–72.

    Article  CAS  PubMed  Google Scholar 

  28. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.

    Article  CAS  Google Scholar 

  29. Forsaa EB, Larsen JP, Wentzel-Larsen T, Goetz CG, Stebbins GT, Aarsland D, et al. A 12-year population-based study of psychosis in Parkinson disease. Arch Neurol. 2010;67:996–1001.

    Article  PubMed  Google Scholar 

  30. Birtwistle J, Baldwin D. Role of dopamine in schizophrenia and Parkinson’s disease. Br J Nurs. 1998;7:832–4. 6, 8-41.

    Article  CAS  PubMed  Google Scholar 

  31. Kuusimaki T, Al-Abdulrasul H, Kurki S, Hietala J, Hartikainen S, Koponen M, et al. Increased risk of parkinson’s disease in patients with Schizophrenia spectrum disorders. Mov Disord. 2021;36:1353–61.

    Article  CAS  PubMed  Google Scholar 

  32. Schrag A, Barone P, Brown RG, Leentjens AF, McDonald WM, Starkstein S, et al. Depression rating scales in Parkinson’s disease: critique and recommendations. Mov Disord. 2007;22:1077–92.

    Article  PubMed  PubMed Central  Google Scholar 

  33. von Bernhardi R. Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res. 2007;12:215–32.

    Article  Google Scholar 

  34. Duffy SS, Lees JG, Moalem-Taylor G. The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Int. 2014;2014:285245.

    PubMed  PubMed Central  Google Scholar 

  35. Yang L, Neale BM, Liu L, Lee SH, Wray NR, Ji N, et al. Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: genome-wide association study of both common and rare variants. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:419–30.

    Article  PubMed  CAS  Google Scholar 

  36. Hawi Z, Cummins TD, Tong J, Johnson B, Lau R, Samarrai W, et al. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol Psychiatry. 2015;20:289–97.

    Article  CAS  PubMed  Google Scholar 

  37. Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37:984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pennisi E. Meet the psychobiome. Science 2020;368:570–3.

    Article  CAS  PubMed  Google Scholar 

  39. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623–32.

    Article  CAS  PubMed  Google Scholar 

  40. Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 2018;174:497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pearl JR, Colantuoni C, Bergey DE, Funk CC, Shannon P, Basu B, et al. Genome-scale transcriptional regulatory network models of psychiatric and neurodegenerative disorders. Cell Syst. 2019;8:122–35 e7.

    Article  CAS  PubMed  Google Scholar 

  42. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–D82. D1.

    Article  CAS  PubMed  Google Scholar 

  43. Wilson H, Woods D. The New Zealand Medical Journal. N. Z Med J 2002;115:86.

    PubMed  Google Scholar 

  44. Kandeger A, Tekdemir R, Sen B, Selvi Y. A case report of patient who had two manic episodes with psychotic features induced by nasal decongestant. Eur Psychiatry. 2017;41:S428.

    Article  Google Scholar 

  45. Khan MS, Ikram M, Park JS, Park TJ, Kim MO. Gut microbiota, its role in induction of Alzheimer’s disease pathology, and possible therapeutic interventions: special focus on anthocyanins. Cells. 2020;9:853.

    Article  CAS  PubMed Central  Google Scholar 

  46. Bioque M, Gonzalez-Rodriguez A, Garcia-Rizo C, Cobo J, Monreal JA, Usall J, et al. Targeting the microbiome-gut-brain axis for improving cognition in schizophrenia and major mood disorders: A narrative review. Prog Neuropsychopharmacol Biol Psychiatry. 2021;105:110130.

    Article  CAS  PubMed  Google Scholar 

  47. Choi SJ, Hong YH, Shin JY, Yoon BN, Sohn SY, Park CS, et al. Takotsubo cardiomyopathy in amyotrophic lateral sclerosis. J Neurol Sci. 2017;375:289–93.

    Article  PubMed  Google Scholar 

  48. Tublin JM, Adelstein JM, Del Monte F, Combs CK, Wold LE. Getting to the Heart of Alzheimer Disease. Circ Res. 2019;124:142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shao M, Lin X, Jiang D, Tian H, Xu Y, Wang L, et al. Depression and cardiovascular disease: Shared molecular mechanisms and clinical implications. Psychiatry Res. 2020;285:112802.

    Article  PubMed  Google Scholar 

  50. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43:D789–98. Database issue

    Article  PubMed  CAS  Google Scholar 

  51. Becker KG, Barnes KC, Bright TJ, Wang SA. The genetic association database. Nat Genet. 2004;36:431–2.

    Article  CAS  PubMed  Google Scholar 

  52. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang H, Robinson PN, Wang K. Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods. 2015;12:841–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2019YFA0709502, 2020YFA0712403), the National Natural Science Foundation of China (61932008), the 111 Project (B18015) of China, the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01), Natural Science Foundation of Shanghai (21ZR1403200), ZJ Lab, and Shanghai Center for Brain Science and Brain-Inspired Technology. The authors also want to thank all the original data sources.

Author information

Authors and Affiliations

Authors

Contributions

XZ conceived the project. XZ and JC designed the project. JC performed most of the analyses, and wrote the manuscript. XZ helped revise the manuscript. LS constructed GCN modules and TRN, wrote relevant parts in methods, and constructed Supplementary Fig. 2. AY computed genes by MAGMA (and its derivitives) and TWAS. GD constructed Fig. 4A.

Corresponding authors

Correspondence to Jingqi Chen or Xing-Ming Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Song, L., Yang, A. et al. Disrupted long-range gene regulations elucidate shared tissue-specific mechanisms of neuropsychiatric disorders. Mol Psychiatry 27, 2720–2730 (2022). https://doi.org/10.1038/s41380-022-01529-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-022-01529-3

Search

Quick links