Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative trait loci mapping of circulating metabolites in cerebrospinal fluid to uncover biological mechanisms involved in brain-related phenotypes

This article has been updated

Abstract

Genomic studies of molecular traits have provided mechanistic insights into complex disease, though these lag behind for brain-related traits due to the inaccessibility of brain tissue. We leveraged cerebrospinal fluid (CSF) to study neurobiological mechanisms in vivo, measuring 5543 CSF metabolites, the largest panel in CSF to date, in 977 individuals of European ancestry. Individuals originated from two separate cohorts including cognitively healthy subjects (n = 490) and a well-characterized memory clinic sample, the Amsterdam Dementia Cohort (ADC, n = 487). We performed metabolite quantitative trait loci (mQTL) mapping on CSF metabolomics and found 126 significant mQTLs, representing 65 unique CSF metabolites across 51 independent loci. To better understand the role of CSF mQTLs in brain-related disorders we integrated our CSF mQTL results with pre-existing summary statistics on brain traits, identifying 34 genetic associations between CSF metabolites and brain traits. Over 90% of significant mQTLs demonstrated colocalized associations with brain-specific gene expression, unveiling potential neurobiological pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of theĀ CSF mQTL mapping study.
Fig. 2: Manhattan plot and genetic architecture of mQTL associations.
Fig. 3: Heatmap of Z scores of CSF metabolites with at least one study-wide significant metabolome-wide significant association with one of the brain-related traits.
Fig. 4: Phosphatidylcholine QTL colocalization with FADS1 locus.

Similar content being viewed by others

Data availability

GWAS summary statistics on all CSF metabolite levels that were generated as part of this study have been deposited to the European Bioinformatics Institute GWAS Catalog (https://www.ebi.ac.uk/gwas/) under accession no. GCST90286909-GCST90292451. GENCODE v.41 basic gene annotation GTF file from https://www.gencodegenes.org/human/stats_41.html UKBB LD reference panel available from Amazon S3 bucket s3://broad-alkesgroup-ukbb-ld/UKBB_LD/. UKBB functional annotations available from Amazon S3 bucket https://broad-alkesgroup-ukbb-ld.s3.amazonaws.com/UKBB_LD/baselineLF_v2.2.UKB.polyfun.tar.gz. PsychENCODE TWAS weights are available from http://resource.psychencode.org/. PsychENCODE isoTWAS weights are available from https://zenodo.org/record/6795947#.Y8mi2-zMLBI. Summary statistics on Alzheimer’s disease [41], dementia with Lewy bodies [42] and amyotrophic lateral sclerosis [44] are publicly available at the European Bioinformatics Institute GWAS Catalog under accession no. GCST90027158, GCST90001390 and GCST90027163, respectively. Summary statistics on bipolar disorder [45], schizophrenia [46], major depressive disorder [47], attention deficit hyperactivity disorder (ADHD) [48] and alcohol abuse disorder [50] are publicly available on the psychiatric genomics consortium (PGC) website (https://www.med.unc.edu/pgc/results-and-downloads). The MEGASTROKE consortium, launched by the International Stroke Genetics Consortium, has published the stroke [43] summary statistics at https://www.megastroke.org. Full insomnia [49] summary statistics for UKB and the top 10,000 SNPs for 23andMe are available at https://ctg.cncr.nl/software/summary_statistics/.

Change history

  • 16 October 2025

    The accession number GCST90286909-GCST90292451 was incorrectly given as GCP000726 and has been corrected. The original article has been corrected.

References

  1. Kraus WE, Muoio DM, Stevens R, Craig D, Bain JR, Grass E, et al. Metabolomic Quantitative Trait Loci (mQTL) mapping implicates the ubiquitin proteasome system in cardiovascular disease pathogenesis. PLoS Genet. 2015;11:e1005553.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46:543–50.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Prakash S. Human metabolic individuality in biomedical and pharmaceutical research. Circ Cardiovasc Genet. 2011;4:714–5.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Long T, Hicks M, Yu H-C, Biggs WH, Kirkness EF, Menni C, et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat Genet. 2017;49:568–78.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Nag A, Kurushima Y, Bowyer RCE, Wells PM, Weiss S, Pietzner M, et al. Genome-wide scan identifies novel genetic loci regulating salivary metabolite levels. Hum Mol Genet. 2020;29:864–75.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Schlosser P, Li Y, Sekula P, Raffler J, Grundner-Culemann F, Pietzner M, et al. Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nat Genet. 2020;52:167–76.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Yang C, Farias FHG, Ibanez L, Suhy A, Sadler B, Fernandez MV, et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat Neurosci. 2021;24:1302–12.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50:538–48.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Nedergaard M. Garbage Truck of the Brain. Science. 2013;340:1529–30.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Tijms BM, Visser PJ. Pathophysiological subtypes of Alzheimer’s disease based on cerebrospinal fluid proteomics. Alzheimer’s & Dementia. 2020;12:3776–92.

  11. Yan J, Kuzhiumparambil U, Bandodkar S, Dale RC, Fu S. Cerebrospinal fluid metabolomics: detection of neuroinflammation in human central nervous system disease. Clin Transl Immunology. 2021;10:e1318.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Dong R, Darst BF, Deming Y, Ma Y, Lu Q, Zetterberg H, et al. CSF metabolites associate with CSF tau and improve prediction of Alzheimer’s disease status. Alzheimers Dement. 2021;13:e12167.

    Google ScholarĀ 

  13. Robinette SL, Holmes E, Nicholson JK, Dumas ME. Genetic determinants of metabolism in health and disease: from biochemical genetics to genome-wide associations. Genome Med. 2012;4:30.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, Nakanishi T, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet. 2023;55:44–53.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Surendran P, Stewart ID, Au Yeung VPW, Pietzner M, Raffler J, Wƶrheide MA, et al. Rare and common genetic determinants of metabolic individuality and their effects on human health. Nat Med. 2022;28:2321–32.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Tahir UA, Katz DH, Avila-Pachecho J, Bick AG, Pampana A, Robbins JM, et al. Whole genome association study of the plasma metabolome identifies metabolites linked to cardiometabolic disease in black individuals. Nat Commun. 2022;13:4923.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Suhre K, Shin S-Y, Petersen A-K, Mohney RP, Meredith D, WƤgele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477:54–60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Yin X, Chan LS, Bose D, Jackson AU, VandeHaar P, Locke AE, et al. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat Commun. 2022;13:1644.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Suhre K, Wallaschofski H, Raffler J, Friedrich N, Haring R, Michael K, et al. A genome-wide association study of metabolic traits in human urine. Nat Genet. 2011;43:565–9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Wang C, Western D, Yang C, Ali M, Wang L, Gorijala P, et al. Unique genetic architecture of CSF and brain metabolites pinpoints the novel targets for the traits of human wellness. Nat Genet. 2024;56:2685–95. https://doi.org/10.1038/s41588-024-01973-7.

  21. Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol. 2021;4:63.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Luykx JJ, Bakker SC, Lentjes E, Neeleman M, Strengman E, Mentink L, et al. Genome-wide association study of monoamine metabolite levels in human cerebrospinal fluid. Mol Psychiatry. 2014;19:228–34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. van der Flier WM, Scheltens P. Amsterdam dementia cohort: performing research to optimize care. J Alzheimers Dis. 2018;62:1091–111.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Legdeur N, Badissi M, Carter SF, de Crom S, van de Kreeke A, Vreeswijk R, et al. Resilience to cognitive impairment in the oldest-old: design of the EMIF-AD 90+ study. BMC Geriatr. 2018;18:289.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Boomsma DI, de Geus EJC, Vink JM, Stubbe JH, Distel MA, Hottenga J-J, et al. Netherlands twin register: from twins to twin families. Twin Res Hum Genet. 2006;9:849–57.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  26. Konijnenberg E, Carter SF, Ten Kate M, den Braber A, Tomassen J, Amadi C, et al. The EMIF-AD PreclinAD study: study design and baseline cohort overview. Alzheimers Res Ther. 2018;10:75.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  28. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89:88–100.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  30. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Tijms BM, Willemse EAJ, Zwan MD, Mulder SD, Visser PJ, van Berckel BNM, et al. Unbiased approach to counteract upward drift in cerebrospinal Fluid amyloid-β 1-42 analysis results. Clin Chem. 2018;64:576–85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Duits FH, Teunissen CE, Bouwman FH, Visser P-J, Mattsson N, Zetterberg H, et al. The cerebrospinal fluid ā€˜Alzheimer profile’: easily said, but what does it mean? Alzheimers Dement. 2014;10:713–723.e2.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  33. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49:1137–46.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Fan S, Kind T, Cajka T, Hazen SL, Tang WHW, Kaddurah-Daouk R, et al. Systematic error removal using random forest for normalizing large-scale untargeted lipidomics data. Anal Chem. 2019;91:3590–6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Lam M, Awasthi S, Watson HJ, Goldstein J, Panagiotaropoulou G, Trubetskoy V, et al. RICOPILI: rapid imputation for COnsortias PIpeLIne. Bioinformatics. 2020;36:930–3.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Watanabe K, Taskesen E, van Bochoven A. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1–11.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    ArticleĀ  Google ScholarĀ 

  40. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–36.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Chia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH, Gustavsson E, et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet. 2021;53:294–303.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50:524–37.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. van Rheenen W, van der Spek RAA, Bakker MK, van Vugt JJFA, Hop PJ, Zwamborn RAJ, et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet. 2021;53:1636–48.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Trubetskoy V, PardiƱas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Watanabe K, Jansen PR, Savage JE, Nandakumar P, Wang X, Hinds DA, et al. Genome-wide meta-analysis of insomnia prioritizes genes associated with metabolic and psychiatric pathways. Nat Genet. 2022;54:1125–32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Sanchez-Roige S, Palmer AA, Fontanillas P, Elson SL, 23andMe Research Team, the Substance Use Disorder Working Group of the Psychiatric Genomics Consortium, Adams MJ, et al. Genome-Wide Association Study Meta-Analysis of the Alcohol Use Disorders Identification Test (AUDIT) in two population-based cohorts. Am J Psychiatry. 2019;176:107–18.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  51. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 2016;32:1493–501.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J R Stat Soc Series B Stat Methodol. 2020;82:1273–1300.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Weissbrod O, Hormozdiari F, Benner C, Cui R, Ulirsch J, Gazal S, et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat Genet. 2020;52:1355–63.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Koromina M, Ravi A, Panagiotaropoulou G, Schilder BM, Humphrey J, Braun A, et al. Fine-mapping genomic loci refines bipolar disorder risk genes. medRxiv [Preprint] https://doi.org/10.1101/2024.02.12.24302716.

  56. Walker RL, Ramaswami G, Hartl C, Mancuso N, Gandal MJ, de la Torre-Ubieta L, et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell. 2020;181:745.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. Bhattacharya A, Vo DD, Jops C, Kim M, Wen C, Hervoso JL, et al. Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human brain. Nat Genet. 2023;55:2117–28.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Watanabe K, Stringer S, Frei O, Umićević Mirkov M, de Leeuw C, Polderman TJC, et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019;51:1339–48.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Flynn ED, Lappalainen T. Functional characterization of genetic variant effects on expression. Annu Rev Biomed Data Sci. 2022;5:119–39.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  61. Jo B-S, Choi SS. Introns: the functional benefits of introns in genomes. Genomics Inform. 2015;13:112.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Niu H-M, Yang P, Chen H-H, Hao R-H, Dong S-S, Yao S, et al. Comprehensive functional annotation of susceptibility SNPs prioritized 10 genes for schizophrenia. Transl Psychiatry. 2019;9:1–12.

    ArticleĀ  Google ScholarĀ 

  63. Baslow MH, Guilfoyle DN. N-acetyl-l-histidine, a prominent biomolecule in brain and eye of poikilothermic vertebrates. Biomolecules. 2015;5:635.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  64. Koshiba S, Motoike IN, Saigusa D, Inoue J, Aoki Y, Tadaka S, et al. Identification of critical genetic variants associated with metabolic phenotypes of the Japanese population. Commun Biol. 2020;3:662.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Sall S, Thompson W, Santos A, Dwyer DS. Analysis of major depression risk genes reveals evolutionary conservation, shared phenotypes, and extensive genetic interactions. Front Psychiatry. 2021;12:698029.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Li QX, Liu JC, He MH, Zhou JQ. Kae1 of Saccharomyces cerevisiae KEOPS complex possesses ADP/GDP nucleotidase activity. Biochem J. 2022;479:2433–47.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Edvardson S, Prunetti L, Arraf A, Haas D, Bacusmo JM, Hu JF, et al. tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy. Eur J Hum Genet. 2017;25:545.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  68. Keller BO, Wu BTF, Li SSJ, Monga V, Innis SM. Hypaphorine is present in human milk in association with consumption of legumes. J Agric Food Chem. 2013;61:7654–60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Yee SW, Buitrago D, Stecula A, Ngo HX, Chien H-C, Zou L, et al. Deorphaning a Solute Carrier 22 family member, SLC22A15, through functional genomic studies. FASEB J. 2020;34:15734.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, et al. High Throughput Lipidomic Profiling of Schizophrenia and Bipolar Disorder Brain Tissue Reveals Alterations of Free Fatty Acids, Phosphatidylcholines, and Ceramides. 2008. 9 September 2008. https://doi.org/10.1021/pr800188y.

  71. MacDonald K, Krishnan A, Cervenka E, Hu G, Guadagno E, Trakadis Y. Biomarkers for major depressive and bipolar disorders using metabolomics: a systematic review. Am J Med Genet B Neuropsychiatr Genet. 2019;180:122–37.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  72. Barupal DK, Fiehn O. Generating the blood exposome database using a comprehensive text mining and database fusion approach. Environ Health Perspect. 2019;127:97008.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  73. Auwerx C, Sadler MC, Woh T, Reymond A, Kutalik Z, Porcu E. Exploiting the mediating role of the metabolome to unravel transcript-to-phenotype associations. Elife. 2023;12:e81097.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Ikeda M, Takahashi A, Kamatani Y, Okahisa Y, Kunugi H, Mori N, et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol Psychiatry. 2018;23:639–47.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Yamamoto H, Lee-Okada H-C, Ikeda M, Nakamura T, Saito T, Takata A, et al. GWAS-identified bipolar disorder risk allele in the FADS1/2 gene region links mood episodes and unsaturated fatty acid metabolism in mutant mice. Mol Psychiatry. 2023;28:2848–56. https://doi.org/10.1038/s41380-023-01988-2.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Yin F. Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J. 2023;290:1420–53.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  77. Hammouda S, Ghzaiel I, Khamlaoui W, Hammami S, Mhenni SY, Samet S, et al. Genetic variants in FADS1 and ELOVL2 increase level of arachidonic acid and the risk of Alzheimer’s disease in the Tunisian population. Prostaglandins Leukot Essent Fatty Acids. 2020;160:102159.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Guo K, Wang P, Zhang L, Zhou Y, Dai X, Yan Y, et al. Transcription factor POU4F2 promotes colorectal cancer cell migration and invasion through hedgehog‐mediated epithelial‐mesenchymal transition. Cancer Sci. 2021;112:4176–86.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Aguet F, Anand S, Ardlie KG, Gabriel S, Getz GA, Graubert A, et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30. https://doi.org/10.1126/science.aaz1776.

    ArticleĀ  CASĀ  Google ScholarĀ 

  80. Feofanova EV, Brown MR, Alkis T, Manuel AM, Li X, Tahir UA, et al. Whole-genome sequencing analysis of human metabolome in multi-ethnic populations. Nat Commun. 2023;14:1–12.

    Google ScholarĀ 

Download references

Acknowledgements

We are greatly appreciative to those individuals who donated the CSF samples on which this study was based. We appreciate data acquisition and reporting by the UC Davis West Coast Metabolomics Center. We thank Dr. Evan Hurlow for his insightful discussions on the organic chemistry involved in this study. We would also like to thank Nicole Zelster for her contributions in the early stages of the project. We also thank Dr. Jurjen Luykx for his help with the recruitment of the cognitively healthy controls. This work used computational and storage services associated with the Hoffman2 Cluster which is operated by the UCLA Office of Advanced Research Computing’s Research Technology Group. Research of Alzheimer Center Amsterdam is part of the neurodegeneration research program of Amsterdam Neuroscience. Alzheimer Center Amsterdam is supported by Stichting Alzheimer Nederland and Stichting VUmc Steun Alzheimercentrum Amsterdam. The clinical database structure was developed with funding from Stichting Dioraphte. This work has received support from the EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant number 115372) and Stichting Dioraphte. Genotyping of the Dutch case-control samples was performed in the context of EADB (European Alzheimer DNA biobank) funded by the JPco-fuND FP-829-029 (ZonMW project number 733051061). This project was funded by the NIH National Institute on Aging (NIA) grant RF1AG058484 and the National Institute of Mental Health (NIMH) grant R01MH115676 to RAO. LMR was funded by the Memorabel fellowship (ZonMW projectnumber: 10510022110012). TB was supported by the NIH (grant no. 5T32HG002536). SJL is recipient of funding from ZonMW (#733050512), Health~Holland, Topsector Life Sciences & Health (PPP-allowance; #LSHM20106). Stichting Dioraphte, the Edwin Bouw Fonds and Stichting VUmc fonds. WMF, SJL, CT are recipients of ABOARD, which is a public-private partnership receiving funding from ZonMW (#73305095007) and Health~Holland, Topsector Life Sciences & Health (PPP-allowance; #LSHM20106). More than 30 partners participate in ABOARD (www.aboard-project.nl). ABOARD also receives funding from de Hersenstichting, Edwin Bouw Fonds and Gieskes-Strijbisfonds. The MEGASTROKE project received funding from sources specified at http://www.megastroke.org/acknowledgments.html.

Author information

Authors and Affiliations

Authors

Contributions

LMR and TB led and performed the main analyses and wrote the main draft of the manuscript. MF, NR, MK aided in data QC and analysis. MB prepared and maintained cognitively healthy CSF and genotype samples for processing. YALP, AB, WMF, PJV, SJL, BMT, and CET provided the Amsterdam Dementia Cohort clinical data and sample collection, and contributed to discussion of results. LOL and RAO contributed to the conception, supervised analyses, and the discussion of the results. All authors have reviewed and approved the manuscript.

Corresponding authors

Correspondence to Lianne M. Reus, Toni Boltz or Roel A. Ophoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reus, L.M., Boltz, T., Francia, M. et al. Quantitative trait loci mapping of circulating metabolites in cerebrospinal fluid to uncover biological mechanisms involved in brain-related phenotypes. Mol Psychiatry 30, 3478–3490 (2025). https://doi.org/10.1038/s41380-025-02934-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-02934-0

Search

Quick links