Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cocaine and morphine induce shared and divergent transcriptional regulation in nucleus accumbens D1 and D2 medium spiny neurons

Abstract

Substance use disorders (SUDs) induce widespread molecular dysregulation in nucleus accumbens (NAc), a brain region pivotal for coordinating motivation and reward, which is linked to neural and behavioral disturbances promoting addiction. Despite the overlapping symptomatology of SUDs, different drug classes exert partly unique influences on neural circuits, cell types, physiology, and gene expression. To better understand common and divergent molecular mechanisms governing SUD pathology, we characterized the cell-type-specific restructuring of the NAc transcriptional landscape after psychostimulant or opioid exposure. We combined fluorescence-activated nuclei sorting and deep RNA sequencing to profile NAc D1 and D2 medium spiny neurons (MSNs) across cocaine and morphine exposure paradigms, including initial exposure, prolonged withdrawal after repeated exposure, and re-exposure post-withdrawal. Our analyses reveal that D1 MSNs display many convergent transcriptional responses between the two drug classes, whereas D2 MSNs manifest highly divergent responses, with morphine causing more adaptations in this cell type. Utilizing multiscale embedded gene co-expression network analysis (MEGENA), we discerned transcriptional regulatory networks subserving biological functions altered by cocaine vs. morphine. We observed largely integrative engagement of overlapping gene networks across drug classes in D1 MSNs, but opposite regulation of key D2 networks, highlighting potential therapeutic gene network targets within MSNs. Analysis of gene regulatory systems at the level of enhancers revealed that morphine engages a unique enhancer landscape in D2 MSNs compared to cocaine. Our findings, and future work leveraging this dataset, will open avenues for the development of targeted therapeutic interventions, addressing the urgent need for more effective treatments for SUDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patterns of transcriptional regulation in NAc D1 and D2 MSNs induced by cocaine or morphine.
Fig. 2: Gene network architecture of cocaine- and morphine-induced transcriptional regulation in NAc.
Fig. 3: D1 NAc MSN gene network that integrates canonical IEGs is primed for activation by chronic cocaine.
Fig. 4: Hub gene analysis defines a unique role for D2 NAc MSNs that differentiates cocaine- vs. morphine-induced changes in biological functions.
Fig. 5: Cocaine and morphine cause distinct shifts in the enhancer landscape of D2 MSNs.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper or its Supplementary Materials. All RNAseq data reported in this study are publicly available in the Gene Expression Omnibus (GSE272823 and GSE276374). Other supporting scripts/code used in this study are available from the corresponding author upon request.

References

  1. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18:247–91.

    Article  CAS  PubMed  Google Scholar 

  2. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98.

    Article  CAS  PubMed  Google Scholar 

  3. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–38.

    Article  PubMed  Google Scholar 

  4. O’Brien CP. Research advances in the understanding and treatment of addiction. Am J Addict. 2003;12:S36–S47.

    Article  PubMed  Google Scholar 

  5. Nestler EJ, Lüscher C. The molecular basis of drug addiction: linking epigenetic to synaptic and circuit mechanisms. Neuron. 2019;102:48–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lobo MK, Nestler EJ. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat. 2011;5:41.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12:623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McClung CA, Nestler EJ. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci. 2003;6:1208–15.

    Article  CAS  PubMed  Google Scholar 

  9. Ketchesin KD, Becker-Krail DD, Xue X, Wilson RS, Lam TT, Williams KR, et al. Differential effects of cocaine and morphine on the diurnal regulation of the mouse nucleus accumbens proteome. J Proteome Res. 2023;22:2377–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lobo MK, Zaman S, Damez-Werno DM, Koo JW, Bagot RC, DiNieri JA, et al. ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci. 2013;33:18381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teague CD, Picone JA, Wright WJ, Browne CJ, Silva GM, Futamura R, et al. CREB Binding at the Zfp189 promoter within medium spiny neuron subtypes differentially regulates behavioral and physiological adaptations over the course of cocaine use. Biol Psychiatry. 2023;93:502–11.

    Article  CAS  PubMed  Google Scholar 

  12. Walker DM, Cates HM, Loh Y-HE, Purushothaman I, Ramakrishnan A, Cahill KM, et al. Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain’s Reward Circuitry. Biol Psychiatry. 2018;84:867–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mews P, Cunningham AM, Scarpa J, Ramakrishnan A, Hicks EM, Bolnick S, et al. Convergent abnormalities in striatal gene networks in human cocaine use disorder and mouse cocaine administration models. Sci Adv. 2023;9:eadd8946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Browne CJ, Futamura R, Minier-Toribio A, Hicks EM, Ramakrishnan A, Martínez-Rivera FJ, et al. Transcriptional signatures of heroin intake and relapse throughout the brain reward circuitry in male mice. Sci Adv. 2023;9:eadg8558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seney ML, Kim S-M, Glausier JR, Hildebrand MA, Xue X, Zong W, et al. Transcriptional alterations in dorsolateral prefrontal cortex and nucleus accumbens implicate neuroinflammation and synaptic remodeling in opioid use disorder. Biol Psychiatry. 2021;90:550–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci. 2021;24:1757–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Peña CJ, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci USA. 2016;113:2726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lobo MK, Covington HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science. 2010;330:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci. 2015;18:1230–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C. Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience. 1991;41:89–125.

    Article  CAS  PubMed  Google Scholar 

  21. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell. 2008;135:738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fox ME, Wulff AB, Franco D, Choi EY, Calarco CA, Engeln M, et al. Adaptations in nucleus accumbens neuron subtypes mediate negative affective behaviors in fentanyl abstinence. Biol Psychiatry. 2023;93:489–501.

    Article  CAS  PubMed  Google Scholar 

  23. Damez-Werno DM, Sun H, Scobie KN, Shao N, Rabkin J, Dias C, et al. Histone arginine methylation in cocaine action in the nucleus accumbens. Proc Natl Acad Sci USA. 2016;113:9623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Godino A, Salery M, Durand-de Cuttoli R, Estill MS, Holt LM, Futamura R, et al. Transcriptional control of nucleus accumbens neuronal excitability by retinoid X receptor alpha tunes sensitivity to drug rewards. Neuron. 2023;111:1453–67.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cole SL, Chandra R, Harris M, Patel I, Wang T, Kim H, et al. Cocaine-induced neuron subtype mitochondrial dynamics through Egr3 transcriptional regulation. Mol Brain. 2021;14:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, et al. Drp1 mitochondrial fission in D1 neurons mediates behavioral and cellular plasticity during early cocaine abstinence. Neuron. 2017;96:1327–41.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reiner BC, Zhang Y, Stein LM, Perea ED, Arauco-Shapiro G, Ben Nathan J, et al. Single nucleus transcriptomic analysis of rat nucleus accumbens reveals cell type-specific patterns of gene expression associated with volitional morphine intake. Transl Psychiatry. 2022;12:374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA, Bauman AJ, et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci Adv. 2020;6:eaba4221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cahill KM, Huo Z, Tseng GC, Logan RW, Seney ML. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci Rep. 2018;8:9588.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021;1:e90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song W-M, Zhang B. Multiscale embedded gene co-expression network analysis. PLoS Comput Biol. 2015;11:e1004574.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramakrishnan A, Wangensteen G, Kim S, Nestler EJ, Shen L. DeepRegFinder: deep learning-based regulatory elements finder. Bioinforma Adv. 2024;4:vbae007.

    Article  Google Scholar 

  35. Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. Neurobiology of the incubation of drug craving. Trends Neurosci. 2011;34:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Phillips RA, Tuscher JJ, Fitzgerald ND, Wan E, Zipperly ME, Duke CG, et al. Distinct subpopulations of D1 medium spiny neurons exhibit unique transcriptional responsiveness to cocaine. Mol Cell Neurosci. 2023;125:103849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salery M, Godino A, Nestler EJ. Drug-activated cells: from immediate early genes to neuronal ensembles in addiction. Adv Pharmacol. 2021;90:173–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kronman H, Richter F, Labonté B, Chandra R, Zhao S, Hoffman G, et al. Biology and bias in cell type-specific RNAseq of nucleus accumbens medium spiny neurons. Sci Rep. 2019;9:8350.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ludewig S, Korte M. Novel insights into the physiological function of the APP (Gene) family and its proteolytic fragments in synaptic plasticity. Front Mol Neurosci. 2016;9:161.

    PubMed  Google Scholar 

  40. Albertson DN, Schmidt CJ, Kapatos G, Bannon MJ. Distinctive profiles of gene expression in the human nucleus accumbens associated with cocaine and heroin abuse. Neuropsychopharmacology. 2006;31:2304–12.

    Article  CAS  PubMed  Google Scholar 

  41. Albertson DN, Pruetz B, Schmidt CJ, Kuhn DM, Kapatos G, Bannon MJ. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem. 2004;88:1211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cho IH, Panzera LC, Chin M, Hoppa MB. Sodium channel β2 subunits prevent action potential propagation failures at axonal branch points. J Neurosci. 2017;37:9519–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Teague CD, Nestler EJ. Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Mol Psychiatry. 2022;27:687–709.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 2000;20:6755–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ray MH, Williams BR, Kuppe MK, Bryant CD, Logan RW. A glitch in the matrix: the role of extracellular matrix remodeling in opioid use disorder. Front Integr Neurosci. 2022;16:899637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zea-Redondo L, Pombo A. Mechanisms of enhancer function in neuronal systems in health and disease. Curr Opin Syst Biol. 2023;100443:32–3.

    Article  Google Scholar 

  47. Harrison LJ, Bose D. Enhancer RNAs step forward: new insights into enhancer function. Development. 2022;149:dev200398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tan B, Browne CJ, Nöbauer T, Vaziri A, Friedman JM, Nestler EJ. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. Science. 2024;384:eadk6742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Strickland JC, Gipson CD, Dunn KE. Dopamine supersensitivity: a novel hypothesis of opioid-induced neurobiological mechanisms underlying opioid-stimulant co-use and opioid relapse. Front Psychiatry. 2022;13:835816.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Stephen Pirpinias, Katherine Beach, Catherine McManus, Kyra Schmidt, and Ezekiell Mouzon for transgenic mouse breeding and genotyping. We also thank Dr. Edgardo Aritzia from the Dean’s Flow Cytometry CoRE at the Icahn School of Medicine at Mount Sinai for assistance with nuclei sorting. Schematics in Figs. 1 and 4 were created with BioRender.com. This work was supported by grants from the National Institute on Drug Abuse (P01DA047233, R01DA007359, and R01DA014133 to E.J.N), National Science and Research Council of Canada (NSERC PDF to C.J.B.), National Institute on Alcohol Abuse and Alcoholism (K99AA027839 to P.M.), and Brain and Behavior Research Foundation (BBRF Young Investigator Grant to P.M.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CJB, PM, and EJN Methodology: ME, XZ, and BZ Investigation: CJB, PM, ME, LMH, XZ, RF Visualization: CJB, PM, ME, XZ, Formal analysis: CJB, PM, ME, XZ Writing: CJB, PM, EJN Writing–review and editing: All authors read and commented on the manuscript. Supervision: LS, BZ, EJN.

Corresponding author

Correspondence to Eric J. Nestler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experiments were conducted in accordance with the regulations and guidelines of the Institutional Animal Care and Use Committee (IACUC) at the Icahn School of Medicine at Mount Sinai (protocol number 08-0465).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Browne, C.J., Mews, P., Estill, M. et al. Cocaine and morphine induce shared and divergent transcriptional regulation in nucleus accumbens D1 and D2 medium spiny neurons. Mol Psychiatry 30, 4247–4257 (2025). https://doi.org/10.1038/s41380-025-03004-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03004-1

This article is cited by

Search

Quick links