Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The emergence of chronic diseases of adulthood and middle age in the young: the COIDS (chronic inflammation, obesity, insulin resistance/type 2 diabetes, and depressive syndromes) noxious quartet of pro-inflammatory stress outcomes

Abstract

Major depression, type 2 diabetes, and essential (primary) hypertension are chronic medical and psychiatric disorders that have traditionally affected primarily adults and middle-aged individuals. However, recent decades have witnessed an increasing prevalence of these conditions among children and adolescents. For diseases that typically require prolonged exposure to risk factors to emerge in childhood and adolescence, the amount of exposure to a single risk factor would have to be exceptionally high. We advance the alternative hypothesis of multiple factors acting synergistically. Biological mechanisms underlying the response to ongoing (chronic) stress are logical candidates for being a shared pathway. In the context of persistent and synergistic psychological, social, and economic pressures, unremitting stress can lead to such disease outcomes, exerting a direct influence on the emergence of chronic disorders, and it can also contribute to obesity. Depression follows the same trajectory; therefore, we should examine it as an entity whose consequences are directly reflected in behavioral outcomes, including (over-) eating. Other contributing pathways include chronic sleep deprivation, epigenetic modifications, telomere shortening, the physical environment, pathogens, and the microbiome. We introduce here the concept of the Chronic inflammation, Obesity, Insulin resistance/type 2 diabetes, and Depressive Syndromes (COIDS) noxious quartet of pro-inflammatory stress outcomes, as an increasingly common pathophysiologic state, representing a distinct presentation of type 2 allostatic overload, with direct implications for the current chronic disease epidemic. The compounded effects of a pro-inflammatory state that is fueled by four different and co-existing sources may contribute to explain the emergence of chronic diseases of adulthood and middle age in the young. PPARγ might represent a potential translational therapeutic target for those with COIDS. We propose that highly adverse environments sustain sufficient chronic stress to bring about in the young diseases that had been previously confined to adults.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The COIDS (Chronic inflammatory disease syndrome) noxious quartet conceptual framework.

Similar content being viewed by others

Notes

  1. BMI – Body Mass Index is the quotient of an individual’s weight in kilograms by the square root of his height in meters. Overweight and obesity are widely regarded as having BMIs above 25 and 30 kg/m2, respectively.

  2. GDP – Gross Domestic Product is a measure of the size of a region’s economy, commonly defined as the market value of all final goods and services produced within a country in a given period of time.

  3. NHANES – The National Health and Nutrition Examination Survey is an ongoing survey conducted by the United States Center for Disease Control and the National Centers for Health Statistics designed to assess the health and nutritional status of adults and children in the United States through interviews and direct physical examinations.

References

  1. Phipps SA, Burton PS, Osberg LS, Lethbridge LN. Poverty and the extent of child obesity in Canada, Norway and the United States. Obes Rev. 2006;7:5–12. https://doi.org/10.1111/j.1467-789X.2006.00217.x.

    Article  CAS  PubMed  Google Scholar 

  2. Drewnowski A, Specter SE. Poverty and obesity: the role of energy density and energy costs. Am J Clin Nutr. 2004;79:6–16. https://doi.org/10.1093/ajcn/79.1.6.

    Article  CAS  PubMed  Google Scholar 

  3. Ezzati M, Vander Hoorn S, Lawes CM, Leach R, James WP, Lopez AD, et al. Rethinking the “diseases of affluence” paradigm: global patterns of nutritional risks in relation to economic development. PLoS Med. 2005;2:e133. https://doi.org/10.1371/journal.pmed.0020133.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dennison BA, Erb TA, Jenkins PL. Television viewing and television in bedroom associated with overweight risk among low-income preschool children. Pediatrics. 2002;109:1028–35. https://doi.org/10.1542/peds.109.6.1028.

    Article  PubMed  Google Scholar 

  5. Blackwell DL, Tonthat L. Summary health statistics for the U.S. population: national health interview survey, 1999. Vital Health Stat 10. 2003;211:1–94.

    Google Scholar 

  6. Hemmingsson E, Nowicka P, Ulijaszek S, Sorensen TIA. The social origins of obesity within and across generations. Obes Rev. 2023;24:e13514. https://doi.org/10.1111/obr.13514.

    Article  PubMed  Google Scholar 

  7. Schwarz PE, Reimann M, Li J, Bergmann A, Licinio J, Wong ML, et al. The metabolic syndrome - a global challenge for prevention. Horm Metab Res. 2007;39:777–80. https://doi.org/10.1055/s-2007-990312.

    Article  CAS  PubMed  Google Scholar 

  8. Ehrlich PR. The population bomb. New York: Intext; 1971.

    Google Scholar 

  9. Bornstein SR, Ehrhart-Bornstein M, Wong ML, Licinio J. Is the worldwide epidemic of obesity a communicable feature of globalization? Exp Clin Endocrinol Diabetes. 2008;116:S30–32. https://doi.org/10.1055/s-2008-1081485.

    Article  CAS  PubMed  Google Scholar 

  10. Shafrir E. Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes Metab. 1996;22:122–31.

    CAS  PubMed  Google Scholar 

  11. Reed J, Bain S, Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes Metab Syndr Obes. 2021;14:3567–602. https://doi.org/10.2147/DMSO.S319895.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Amutha A, Mohan V. Diabetes complications in childhood and adolescent onset type 2 diabetes-a review. J Diabetes Complications. 2016;30:951–7. https://doi.org/10.1016/j.jdiacomp.2016.02.009.

    Article  PubMed  Google Scholar 

  13. Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37:278–316. https://doi.org/10.1210/er.2015-1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Groves BM, Zuckerman B, Marans S, Cohen DJ. Silent victims. Children who witness violence. JAMA. 1993;269:262–4.

    Article  CAS  PubMed  Google Scholar 

  15. Agid O, Shapira B, Zislin J, Ritsner M, Hanin B, Murad H, et al. Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol Psychiatry. 1999;4:163–72.

    Article  CAS  PubMed  Google Scholar 

  16. Evans GW. The environment of childhood poverty. Am Psychol. 2004;59:77–92. https://doi.org/10.1037/0003-066X.59.2.77.

    Article  PubMed  Google Scholar 

  17. Drake B, Pandey S. Understanding the relationship between neighborhood poverty and specific types of child maltreatment. Child Abuse Negl. 1996;20:1003–18. https://doi.org/10.1016/0145-2134(96)00091-9.

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Stanton B, Feigelman S. Exposure to drug trafficking among urban, low-income African American children and adolescents. Arch Pediatr Adolesc Med. 1999;153:161–8. https://doi.org/10.1001/archpedi.153.2.161.

    Article  CAS  PubMed  Google Scholar 

  19. Hobson JM, Moody MD, Sorge RE, Goodin BR. The neurobiology of social stress resulting from Racism: implications for pain disparities among racialized minorities. Neurobiol Pain. 2022;12:100101. https://doi.org/10.1016/j.ynpai.2022.100101. PMC9449662

    Article  PubMed  PubMed Central  Google Scholar 

  20. LLerena A, Dorado P, O’Kirwan F, Jepson R, Licinio J, Wong ML. Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards. Pharmacogenomics J. 2004;4:403–6. https://doi.org/10.1038/sj.tpj.6500278.

    Article  CAS  PubMed  Google Scholar 

  21. Daniel-Calveras A, Baldaqui N, Baeza I. Mental health of unaccompanied refugee minors in Europe: a systematic review. Child Abuse Negl. 2022;133:105865. https://doi.org/10.1016/j.chiabu.2022.105865.

    Article  PubMed  Google Scholar 

  22. de Kloet ER, Joels M. The cortisol switch between vulnerability and resilience. Mol Psychiatry. 2024;29:20–34. https://doi.org/10.1038/s41380-022-01934-8.

    Article  CAS  PubMed  Google Scholar 

  23. Agorastos A, Chrousos GP. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Mol Psychiatry. 2022;27:502–13. https://doi.org/10.1038/s41380-021-01224-9.

    Article  PubMed  Google Scholar 

  24. Sternberg EM, Licinio J. Overview of neuroimmune stress interactions. implications for susceptibility to inflammatory disease. Ann N Y Acad Sci. 1995;771:364–71. https://doi.org/10.1111/j.1749-6632.1995.tb44695.x.

    Article  CAS  PubMed  Google Scholar 

  25. Licinio J, Frost P. The neuroimmune-endocrine axis: pathophysiological implications for the central nervous system cytokines and hypothalamus-pituitary-adrenal hormone dynamics. Braz J Med Biol Res. 2000;33:1141–8. https://doi.org/10.1590/s0100-879x2000001000003.

    Article  CAS  PubMed  Google Scholar 

  26. Inserra A, Rogers GB, Licinio J, Wong ML. The microbiota-inflammasome hypothesis of major depression. Bioessays. 2018;40:e1800027. https://doi.org/10.1002/bies.201800027.

    Article  PubMed  PubMed Central  Google Scholar 

  27. McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153:2093–101.

    Article  CAS  PubMed  Google Scholar 

  28. McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav. 2003;43:2–15. https://doi.org/10.1016/s0018-506x(02)00024-7.

    Article  PubMed  Google Scholar 

  29. Friedmann E, Thomas SA, Liu F, Morton PG, Chapa D, Gottlieb SS, et al. Relationship of depression, anxiety, and social isolation to chronic heart failure outpatient mortality. Am Heart J. 2006;152:940.e941–948. https://doi.org/10.1016/j.ahj.2006.05.009.

    Article  Google Scholar 

  30. Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999;99:2192–217. https://doi.org/10.1161/01.cir.99.16.2192.

    Article  CAS  PubMed  Google Scholar 

  31. Matthews K, Schwartz J, Cohen S, Seeman T. Diurnal cortisol decline is related to coronary calcification: CARDIA study. Psychosom Med. 2006;68:657–61. https://doi.org/10.1097/01.psy.0000244071.42939.0e.

    Article  CAS  PubMed  Google Scholar 

  32. Falkner B, Onesti G, Angelakos ET, Fernandes M, Langman C. Cardiovascular response to mental stress in normal adolescents with hypertensive parents. Hemodynamics and mental stress in adolescents. Hypertension. 1979;1:23–30. https://doi.org/10.1161/01.hyp.1.1.23.

    Article  CAS  PubMed  Google Scholar 

  33. Peyrot MF, McMurry JF Jr. Stress buffering and glycemic control. The role of coping styles. Diabetes Care. 1992;15:842–6. https://doi.org/10.2337/diacare.15.7.842.

    Article  CAS  PubMed  Google Scholar 

  34. Kai K, Morimoto I, Morita E, Okada Y, Yamamoto S, Kanda K, et al. Environmental stress modifies glycemic control and diabetes onset in type 2 diabetes prone otsuka long evans tokushima fatty (OLETF) rats. Physiol Behav. 2000;68:445–52. https://doi.org/10.1016/s0031-9384(99)00187-0.

    Article  CAS  PubMed  Google Scholar 

  35. Kessler RC, Walters EE. Epidemiology of DSM-III-R major depression and minor depression among adolescents and young adults in the national comorbidity survey. Depress Anxiety. 1998;7:3–14.

    Article  CAS  PubMed  Google Scholar 

  36. Wong ML, Dong C, Andreev V, Arcos-Burgos M, Licinio J. Prediction of susceptibility to major depression by a model of interactions of multiple functional genetic variants and environmental factors. Mol Psychiatry. 2012;17:624–33. https://doi.org/10.1038/mp.2012.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thapar A, Eyre O, Patel V, Brent D. Depression in young people. Lancet. 2022;400:617–31. https://doi.org/10.1016/S0140-6736(22)01012-1.

    Article  PubMed  Google Scholar 

  38. Lavori PW, Klerman GL, Keller MB, Reich T, Rice J, Endicott J. Age-period-cohort analysis of secular trends in onset of major depression: findings in siblings of patients with major affective disorder. J Psychiatr Res. 1987;21:23–35. https://doi.org/10.1016/0022-3956(87)90006-9.

    Article  CAS  PubMed  Google Scholar 

  39. Torrey EF, Miller J. The invisible plague: the rise of mental illness from 1750 to the present. xiv. New Brunswick, NJ: Rutgers University Press; 2001. p. 416 p.

    Google Scholar 

  40. Young LR, Nestle M. The contribution of expanding portion sizes to the US obesity epidemic. Am J Public Health. 2002;92:246–9. https://doi.org/10.2105/ajph.92.2.246.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Epel E, Jimenez S, Brownell K, Stroud L, Stoney C, Niaura R. Are stress eaters at risk for the metabolic syndrome? Ann N Y Acad Sci. 2004;1032:208–10. https://doi.org/10.1196/annals.1314.022.

    Article  PubMed  Google Scholar 

  42. Steenblock C, Schwarz PEH, Ludwig B, Linkermann A, Zimmet P, Kulebyakin K, et al. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol. 2021;9:786–98. https://doi.org/10.1016/S2213-8587(21)00244-8. receiving grants for investigator-initiated studies for AstraZeneca, Novartis, Novo Nordisk, Sanofi-Aventis, Lilly and Merck Sharp & Dohme, Boehringer Ingelheim, Bayer, Berlin-Chemie AG-Menarini Group, Janssen, and Napp. JSS reports personal fees as a consultant or advisor for Abvance, Adocia, Astra-Zeneca, Avotres, Bayer, Biozeus, Boehringer-Ingelheim, Dalcor, Dance Biopharm-Aerami Therapeutics, Diavacs, Duologics, Elcelyx, Eli Lilly, Enthera, Esperion, Geneuro, Ideal Life, Imcyse, Immunomolecular Therapeutics, Intarcia, Kamada, Kriya, Moerae Matrix, Novo-Nordisk, Oramed, Orgenesis, Pila Pharma, Precigen ActoBiotics, Preziba/Signos, Provention Bio, Sanofi, Tolerion, Valeritas, Viacyte, Viela Bio, vTv Therapeutics, and Zafgen. JHDV reports personal fees as consultant or advisor for Adocia, Novo Nordisk, and Zealand. ER reports personal fees as consultant or advisor for Abbott, Air Liquide, AstraZeneca, Boehringer-Ingelheim, Cellnovo, Dexcom, Eli Lilly, Insulet, Johnson & Johnson (Animas, LifeScan), Medirio, Medtronic, Novo Nordisk, Roche Diagnostics, Sanofi-Aventis, and Tandem; and research grant or material support from Abbott, Dexcom, Insulet, Roche Diagnostics, and Tandem. BG reports personal fees as consultant or advisor for Novo Nordisk, Pfizer, Merck Sharp & Dohme, Astra Zeneca, and Takeda. FR reports personal fees as a consultant or advisor for Ethicon, Medtronic, and Novo Nordisk. All other authors declare no competing interests

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Steenblock C, Schwarz PEH, Perakakis N, Brajshori N, Beqiri P, Bornstein SR. The interface of COVID-19, diabetes, and depression. Discov Ment Health. 2022;2:5. https://doi.org/10.1007/s44192-44022-00007-44190.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Steenblock C, Toepfner N, Kok YP, Mavberg P, Bruckmoser H, Breu A, et al. A multimodal approach for treating post-acute infectious syndrome. Brain Medicine. 2024:1-7. https://doi.org/10.61373/bm024p.0064.

  45. Siddiq S, Ahmed S, Akram I. Clinical outcomes following COVID-19 infection in ethnic minority groups in the UK: a systematic review and meta-analysis. Public Health. 2023;222:205–14. https://doi.org/10.1016/j.puhe.2022.05.019.

    Article  CAS  PubMed  Google Scholar 

  46. Lee FC, Adams L, Graves SJ, Massetti GM, Calanan RM, Penman-Aguilar A, et al. Counties with High COVID-19 incidence and relatively large racial and ethnic minority populations - United States, April 1-December 22, 2020. MMWR Morb Mortal Wkly Rep. 2021;70:483–9. https://doi.org/10.15585/mmwr.mm7013e1. PMC8022874 Journal Editors form for disclosure of potential conflicts of interest. No potential conflicts of interest were disclosed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fabiano N, Luu B, Puder D Human microplastic removal: what does the evidence tell us? Brain Medicine. 2025:1-2. https://doi.org/10.61373/bm025c.0020.

  48. Nihart AJ, Garcia MA, El Hayek E, Liu R, Olewine M, Kingston JD, et al. Bioaccumulation of microplastics in decedent human brains. Nature medicine. 2025. https://doi.org/10.1038/s41591-024-03453-1.

  49. Estadella D, da Penha Oller do Nascimento CM, Oyama LM, Ribeiro EB, Damaso AR, de Piano A. Lipotoxicity: effects of dietary saturated and transfatty acids. Mediators Inflamm. 2013;2013:137579. https://doi.org/10.1155/2013/137579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sick E, Brehin S, Andre P, Coupin G, Landry Y, Takeda K, et al. Advanced glycation end products (AGEs) activate mast cells. Br J Pharmacol. 2010;161:442–55. https://doi.org/10.1111/j.1476-5381.2010.00905.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tristan Asensi M, Napoletano A, Sofi F, Dinu M. Low-grade inflammation and ultra-processed foods consumption: a review. Nutrients. 2023;15:1546. https://doi.org/10.3390/nu15061546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gold PW, Wong ML, Goldstein DS, Gold HK, Ronsaville DS, Esler M, et al. Cardiac implications of increased arterial entry and reversible 24-h central and peripheral norepinephrine levels in melancholia. Proc Natl Acad Sci USA. 2005;102:8303–8. https://doi.org/10.1073/pnas.0503069102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carroll BJ, Curtis GC, Davies BM, Mendels J, Sugarman AA. Urinary free cortisol excretion in depression. Psychol Med. 1976;6:43–50.

    Article  CAS  PubMed  Google Scholar 

  54. Bornstein SR, Schuppenies A, Wong ML, Licinio J. Approaching the shared biology of obesity and depression: the stress axis as the locus of gene-environment interactions. Mol Psychiatry. 2006;11:892–902. https://doi.org/10.1038/sj.mp.4001873.

    Article  CAS  PubMed  Google Scholar 

  55. Steenblock C, Todorov V, Kanczkowski W, Eisenhofer G, Schedl A, Wong ML, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol Psychiatry. 2020;25:1611–7. https://doi.org/10.1038/s41380-020-0758-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joseph JJ, Golden SH. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2017;1391:20–34. https://doi.org/10.1111/nyas.13217.

    Article  PubMed  Google Scholar 

  57. Bornstein SR, Voit-Bak K, Donate T, Rodionov RN, Gainetdinov RR, Tselmin S, et al. Chronic post-COVID-19 syndrome and chronic fatigue syndrome: Is there a role for extracorporeal apheresis? Mol Psychiatry. 2022;27:34–7. https://doi.org/10.1038/s41380-021-01148-4.

  58. Licinio J, Wong ML. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry. 1999;4:317–27. https://doi.org/10.1038/sj.mp.4000586.

    Article  CAS  PubMed  Google Scholar 

  59. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27:813–23. https://doi.org/10.2337/diacare.27.3.813.

    Article  PubMed  Google Scholar 

  60. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.

    CAS  PubMed  Google Scholar 

  61. Yin M, Marrone L, Peace CG, O’Neill LAJ. NLRP3, the inflammasome and COVID-19 infection. QJM. 2023;116:502–7. https://doi.org/10.1093/qjmed/hcad011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21:797–805. https://doi.org/10.1038/mp.2016.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: a systematic review. Metabolism. 2017;74:1–9. https://doi.org/10.1016/j.metabol.2017.06.002.

    Article  CAS  PubMed  Google Scholar 

  64. Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2016;12:13–26. https://doi.org/10.1038/nrneph.2015.175.

    Article  CAS  PubMed  Google Scholar 

  65. Wang D, Wang H, Gao H, Zhang H, Zhang H, Wang Q, et al. P2X7 receptor mediates NLRP3 inflammasome activation in depression and diabetes. Cell Biosci. 2020;10:28. https://doi.org/10.1186/s13578-020-00388-1.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ, et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab. 2005;90:2522–30. https://doi.org/10.1210/jc.2004-1667.

    Article  CAS  PubMed  Google Scholar 

  67. Kreiner FF, Kraaijenhof JM, von Herrath M, Hovingh GKK, von Scholten BJ. Interleukin 6 in diabetes, chronic kidney disease, and cardiovascular disease: mechanisms and therapeutic perspectives. Expert Rev Clin Immunol. 2022;18:377–89. https://doi.org/10.1080/1744666X.2022.2045952.

    Article  CAS  PubMed  Google Scholar 

  68. Chattu VK, Chattu SK, Spence DW, Manzar MD, Burman D, Pandi-Perumal SR. Do disparities in sleep duration among racial and ethnic minorities contribute to differences in disease prevalence? J Racial Ethn Health Disparities. 2019;6:1053–61. https://doi.org/10.1007/s40615-019-00607-7.

    Article  PubMed  Google Scholar 

  69. Chattu VK, Chattu SK, Burman D, Spence DW, Pandi-Perumal SR. The interlinked rising epidemic of insufficient sleep and diabetes mellitus. Healthcare. 2019;7:37. https://doi.org/10.3390/healthcare7010037.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Salomon RM, Delgado PL, Licinio J, Krystal JH, Heninger GR, Charney DS. Effects of sleep deprivation on serotonin function in depression. Biol Psychiatry. 1994;36:840–6.

    Article  CAS  PubMed  Google Scholar 

  71. Shoubridge AP, Choo JM, Martin AM, Keating DJ, Wong ML, Licinio J, et al. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry. 2022;27:1908–19. https://doi.org/10.1038/s41380-022-01479-w.

    Article  CAS  PubMed  Google Scholar 

  72. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21:786–96. https://doi.org/10.1038/mp.2016.44.

    Article  CAS  PubMed  Google Scholar 

  73. Zheng P, Yang J, Li Y, Wu J, Liang W, Yin B, et al. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv Sci. 2020;7:1902862. https://doi.org/10.1002/advs.201902862.

    Article  CAS  Google Scholar 

  74. Sankararaman S, Noriega K, Velayuthan S, Sferra T, Martindale R. Gut microbiome and its impact on obesity and obesity-related disorders. Curr Gastroenterol Rep. 2023;25:31–44. https://doi.org/10.1007/s11894-022-00859-0.

    Article  PubMed  Google Scholar 

  75. Wijdeveld M, Nieuwdorp M, IJzerman R. The interaction between microbiome and host central nervous system: the gut-brain axis as a potential new therapeutic target in the treatment of obesity and cardiometabolic disease. Expert Opin Ther Targets. 2020;24:639–53. https://doi.org/10.1080/14728222.2020.1761958.

    Article  CAS  PubMed  Google Scholar 

  76. Delzenne NM, Rodriguez J, Olivares M, Neyrinck AM. Microbiome response to diet: focus on obesity and related diseases. Rev Endocr Metab Disord. 2020;21:369–80. https://doi.org/10.1007/s11154-020-09572-7.

    Article  PubMed  Google Scholar 

  77. Lim YY, Lee YS, Ooi DSQ. Engineering the gut microbiome for treatment of obesity: a review of current understanding and progress. Biotechnol J. 2020;15:e2000013. https://doi.org/10.1002/biot.202000013.

    Article  CAS  PubMed  Google Scholar 

  78. Borrello K, Lim U, Park SY, Monroe KR, Maskarinec G, Boushey CJ, et al. Dietary intake mediates ethnic differences in gut microbial composition. Nutrients. 2022;14:660. https://doi.org/10.3390/nu14030660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Parade SH, Huffhines L, Daniels TE, Stroud LR, Nugent NR, Tyrka AR. A systematic review of childhood maltreatment and DNA methylation: candidate gene and epigenome-wide approaches. Transl Psychiatry. 2021;11:134. https://doi.org/10.1038/s41398-021-01207-y.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Radtke KM, Schauer M, Gunter HM, Ruf-Leuschner M, Sill J, Meyer A, et al. Epigenetic modifications of the glucocorticoid receptor gene are associated with the vulnerability to psychopathology in childhood maltreatment. Transl Psychiatry. 2015;5:e571. https://doi.org/10.1038/tp.2015.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ramo-Fernandez L, Gumpp AM, Boeck C, Krause S, Bach AM, Waller C, et al. Associations between childhood maltreatment and DNA methylation of the oxytocin receptor gene in immune cells of mother-newborn dyads. Transl Psychiatry. 2021;11:449. https://doi.org/10.1038/s41398-021-01546-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Perroud N, Paoloni-Giacobino A, Prada P, Olie E, Salzmann A, Nicastro R, et al. Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl Psychiatry. 2011;1:e59. https://doi.org/10.1038/tp.2011.60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roberts AL, Gladish N, Gatev E, Jones MJ, Chen Y, MacIsaac JL, et al. Exposure to childhood abuse is associated with human sperm DNA methylation. Transl Psychiatry. 2018;8:194. https://doi.org/10.1038/s41398-018-0252-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Arias E, Xu J. United States life tables, 2020. Natl Vital Stat Rep. 2022;71:1–64.

    PubMed  Google Scholar 

  85. Gilson E, Segal-Bendirdjian E. The telomere story or the triumph of an open-minded research. Biochimie. 2010;92:321–6. https://doi.org/10.1016/j.biochi.2009.12.014.

    Article  CAS  PubMed  Google Scholar 

  86. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011;14:28–34. https://doi.org/10.1097/MCO.0b013e32834121b1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Whittemore K, Vera E, Martinez-Nevado E, Sanpera C, Blasco MA. Telomere shortening rate predicts species life span. Proc Natl Acad Sci USA. 2019;116:15122–7. https://doi.org/10.1073/pnas.1902452116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P. Telomere length in early life predicts lifespan. Proc Natl Acad Sci USA. 2012;109:1743–8. https://doi.org/10.1073/pnas.1113306109.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Topiwala A, Taschler B, Ebmeier KP, Smith S, Zhou H, Levey DF, et al. Alcohol consumption and telomere length: mendelian randomization clarifies alcohol’s effects. Mol Psychiatry. 2022;27:4001–8. https://doi.org/10.1038/s41380-022-01690-9. PMC9718662 financial relationships with any organizations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jung J, McCartney DL, Wagner J, Rosoff DB, Schwandt M, Sun H, et al. Alcohol use disorder is associated with DNA methylation-based shortening of telomere length and regulated by TESPA1: implications for aging. Mol Psychiatry. 2022;27:3875–84. https://doi.org/10.1038/s41380-022-01624-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cabeza de Baca T, Prather AA, Lin J, Sternfeld B, Adler N, Epel ES, et al. Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the coronary artery risk development in young adults study. Mol Psychiatry. 2020;25:1141–53. https://doi.org/10.1038/s41380-019-0482-5.

    Article  PubMed  Google Scholar 

  92. Ayora M, Fraguas D, Abregu-Crespo R, Recio S, Blasco MA, Moises A, et al. Leukocyte telomere length in patients with schizophrenia and related disorders: a meta-analysis of case-control studies. Mol Psychiatry. 2022;27:2968–75. https://doi.org/10.1038/s41380-022-01541-7.

    Article  CAS  PubMed  Google Scholar 

  93. Spano L, Etain B, Meyrel M, Hennion V, Gross G, Laplanche JL, et al. Telomere length and mitochondrial DNA copy number in bipolar disorder: identification of a subgroup of young individuals with accelerated cellular aging. Transl Psychiatry. 2022;12:135. https://doi.org/10.1038/s41398-022-01891-4. PMC8975957 symposium speaker from Sanofi-Aventis, Lundbeck, AstraZeneca, Eli Lilly, Bristol-Myers Squibb, and Servier. B. Etain has received honoraria from Sanofi-Aventis. The remaining authors declare no competing interests

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin YF, Chen PY, Liu HC, Chen YL, Chou WH, Huang MC. Shortened leukocyte telomere length in young adults who use methamphetamine. Transl Psychiatry. 2021;11:519. https://doi.org/10.1038/s41398-021-01640-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Leaderer BP, Belanger K, Triche E, Holford T, Gold DR, Kim Y, et al. Dust mite, cockroach, cat, and dog allergen concentrations in homes of asthmatic children in the northeastern United States: impact of socioeconomic factors and population density. Environ Health Perspect. 2002;110:419–25. https://doi.org/10.1289/ehp.02110419.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lanphear BP, Kahn RS, Berger O, Auinger P, Bortnick SM, Nahhas RW. Contribution of residential exposures to asthma in us children and adolescents. Pediatrics. 2001;107:E98. https://doi.org/10.1542/peds.107.6.e98.

    Article  CAS  PubMed  Google Scholar 

  97. Janani C, Ranjitha Kumari BD. PPAR gamma gene–a review. Diabetes Metab Syndr. 2015;9:46–50. https://doi.org/10.1016/j.dsx.2014.09.015.

    Article  CAS  PubMed  Google Scholar 

  98. Gold PW. The PPARg system in major depression: pathophysiologic and therapeutic implications. Int J Mol Sci. 2021;22:9248. https://doi.org/10.3390/ijms22179248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Devchand PR, Liu T, Altman RB, FitzGerald GA, Schadt EE. The pioglitazone trek via human PPAR gamma: from discovery to a medicine at the FDA and beyond. Front Pharmacol. 2018;9:1093. https://doi.org/10.3389/fphar.2018.01093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rasgon N, Lin KW, Lin J, Epel E, Blackburn E. Telomere length as a predictor of response to pioglitazone in patients with unremitted depression: a preliminary study. Transl Psychiatry. 2016;6:e709. https://doi.org/10.1038/tp.2015.187. PMC5068869 role in this study. NR has been a consultant for the following companies: Shire Pharmaceuticals and Sunovion Pharmaceuticals. She has received research support from the following companies: Magceutics, ADA (American Diabetes Association) and Corcept Pharmaceuticals. None of these companies have a potential role in this study. The remaining authors declare no conflict of interest

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mahmudpour M, Vahdat K, Keshavarz M, Nabipour I. The COVID-19-diabetes mellitus molecular tetrahedron. Mol Biol Rep. 2022;49:4013–24. https://doi.org/10.1007/s11033-021-07109-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Inserra A, Mastronardi CA, Rogers G, Licinio J, Wong ML. Neuroimmunomodulation in major depressive disorder: focus on caspase 1, inducible nitric oxide synthase, and interferon-gamma. Mol Neurobiol. 2019;56:4288–305. https://doi.org/10.1007/s12035-018-1359-3.

    Article  CAS  PubMed  Google Scholar 

  103. Bornstein SR, Licinio J. Improving the efficacy of translational medicine by optimally integrating health care, academia and industry. Nat Med. 2011;17:1567–9. https://doi.org/10.1038/nm.2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lores T, Musker M, Collins K, Burke A, Perry SW, Wong ML, et al. Pilot trial of a group cognitive behavioural therapy program for comorbid depression and obesity. BMC Psychol. 2020;8:34. https://doi.org/10.1186/s40359-020-00400-w.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Grants R01MH127423, R21MH128726, R21MH126405, National Institute of Mental Health, National Institutes of Health, USA awarded to JL and MLW.

Author information

Authors and Affiliations

Authors

Contributions

JL: contributed the manuscript writing, original draft, revision, and created and prepared Fig. 1; AWL: contributed the manuscript writing and original draft, JVB: contributed the manuscript writing and original draft; LR: contributed the manuscript writing and original draft; PWG: contributed the manuscript writing and original draft; SRB: contributed the manuscript writing and original draft, and Ma-Li Wong: contributed the manuscript writing, original draft, and revision.

Corresponding authors

Correspondence to Julio Licinio or Ma-Li Wong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Licinio, J., Licinio, A.W., Busnello, J.V. et al. The emergence of chronic diseases of adulthood and middle age in the young: the COIDS (chronic inflammation, obesity, insulin resistance/type 2 diabetes, and depressive syndromes) noxious quartet of pro-inflammatory stress outcomes. Mol Psychiatry 30, 3348–3356 (2025). https://doi.org/10.1038/s41380-025-03034-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03034-9

This article is cited by

Search

Quick links