Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predictive value of subgenual cingulate normative connectivity to TMS treatment site for antidepressant response in routine clinical practice: a prospective, multisite cohort study

Abstract

Small single-site studies found that transcranial magnetic stimulation (TMS) targets with better antidepressant response were more negatively functionally connected to the subgenual cingulate cortex (SGC). These led to “anti-subgenual” TMS targeting in recent clinical trials. We conducted a larger prospective multi-site observational study to test the robustness of this observation in more diverse clinical populations. Sixty-six treatment-seeking individuals with major depressive disorder (MDD) received 3–8 weeks of daily rTMS to the left dorsolateral prefrontal cortex using scalp-based targeting as part of standard clinical care. Stimulation sites were recorded with MRI neuronavigation on multiple days. Our primary outcome was the correlation between change in Beck Depression Inventory (BDI-II) score and connectivity of each individual’s TMS site to the SGC, computed using resting-state functional connectivity data from 1000 healthy individuals. Secondary (post hoc) analyses incorporated additional clinical covariates. No relationship was found between antidepressant response and normative connectivity of TMS site to SGC (r = 0.1, p = 0.39). This was not due to inconsistency in the location of the TMS sites, which showed smaller within- than between-individual variance (p < 0.0001). Post hoc analyses showed significant associations when adding clinical covariates (r = −0.27, p = 0.014). Baseline anxiety (p < 0.0001) and comorbid psychiatric conditions (p < 0.001) accounted for the most variance in response. Atlas-based connectivity of TMS site to the SGC accounted for minimal variance in antidepressant response in this diverse sample. The “anti-subgenual” target derived based on normative connectome may be suboptimal for MDD patients with high baseline anxiety or psychiatric comorbidities.

Trial registration

ClinicalTrials.gov Identifier: NCT03276793.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of individual involvement and reasons for study termination.
Fig. 2: Variability in TMS target locations (in MNI space) across 66 individuals with MDD.
Fig. 3: Functional connectivity of TMS sites to the SGC as a predictor of antidepressant response.
Fig. 4: The impact of baseline ASI or comorbid diagnoses on clinical outcome improvement following rTMS for three example MDD individuals.

Similar content being viewed by others

Data availability

The data for this study (R01MH113929-01) is available through the NIMH Data Archive (NDA), collection ID C2816. Access requires permission and can be requested at (https://nda.nih.gov).

Code availability

All custom MATLAB scripts used in this study are publicly available in the following GitHub repository: (https://github.com/sanazkhosravani/Khosravani_Fox_MPsy_2025_MATLAB_Scripts/tree/main). As an analogous normative connectome to the one used in this study [27], researchers may consider using the GSP connectome [85], which is openly accessible.

References

  1. Connolly KR, Helmer A, Cristancho MA, Cristancho P, O’Reardon JP. Effectiveness of transcranial magnetic stimulation in clinical practice post-FDA approval in the United States: results observed with the first 100 consecutive cases of depression at an academic medical center. J Clin Psychiatry. 2012;73:e567–e573. https://doi.org/10.4088/JCP.11m07413

    Article  PubMed  Google Scholar 

  2. Trapp NT, Bruss J, King Johnson M, Uitermarkt BD, Garrett L, Heinzerling A, et al. Reliability of targeting methods in TMS for depression: beam F3 vs. 5.5 cm. Brain Stimul. 2020;13:578–81. https://doi.org/10.1016/j.brs.2020.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF, et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol Psychiatry. 2018;84:28–37. https://doi.org/10.1016/j.biopsych.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  4. Cash RFH, Zalesky A, Thomson RH, Tian Y, Cocchi L, Fitzgerald PB. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization. Biol Psychiatry. 2019;86:e5–e7. https://doi.org/10.1016/j.biopsych.2018.12.002

    Article  PubMed  Google Scholar 

  5. Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012;72:595–603. https://doi.org/10.1016/j.biopsych.2012.04.028

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cash RFH, Weigand A, Zalesky A, Siddiqi SH, Downar J, Fitzgerald PB, et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol Psychiatry. 2021;90:689–700. https://doi.org/10.1016/j.biopsych.2020.05.033

    Article  PubMed  Google Scholar 

  7. Siddiqi SH, Weigand A, Pascual-Leone A, Fox MD. Identification of personalized transcranial magnetic stimulation targets based on subgenual cingulate connectivity: an independent replication. Biol Psychiatry. 2021;90:e55–e56. https://doi.org/10.1016/j.biopsych.2021.02.015

    Article  PubMed  Google Scholar 

  8. Fox MD, Liu H, Pascual-Leone A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage. 2013;66:151–60. https://doi.org/10.1016/j.neuroimage.2012.10.082

    Article  PubMed  Google Scholar 

  9. Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am J Psychiatry. 2020;177:716–26. https://doi.org/10.1176/appi.ajp.2019.19070720

    Article  PubMed  Google Scholar 

  10. Cole EJ, Phillips AL, Bentzley BS, Stimpson KH, Nejad R, Barmak F, et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am J Psychiatry. 2021;179:132–41. https://doi.org/10.1176/appi.ajp.2021.20101429

    Article  PubMed  Google Scholar 

  11. Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet. 2018;391:1683–92. https://doi.org/10.1016/S0140-6736(18)30295-2

    Article  PubMed  Google Scholar 

  12. Blumberger DM, Mulsant BH, Thorpe KE, McClintock SM, Konstantinou GN, Lee HH, et al. Effectiveness of standard sequential bilateral repetitive transcranial magnetic stimulation vs bilateral theta burst stimulation in older adults with depression: the FOUR-D randomized noninferiority clinical trial. JAMA Psychiatry. 2022;79:1065–73. https://doi.org/10.1001/jamapsychiatry.2022.2862

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yesavage JA, Fairchild JK, Mi Z, Biswas K, Davis-Karim A, Phibbs CS, et al. Effect of repetitive transcranial magnetic stimulation on treatment-resistant major depression in US Veterans: a randomized clinical trial. JAMA Psychiatry. 2018;75:884–93. https://doi.org/10.1001/jamapsychiatry.2018.1483

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mir-Moghtadaei A, Siddiqi SH, Mir-Moghtadaei K, Blumberger DM, Vila-Rodriguez F, Daskalakis ZJ, et al. Updated scalp heuristics for localizing the dorsolateral prefrontal cortex based on convergent evidence of lesion and brain stimulation studies in depression. Brain Stimul. 2022;15:291–5. https://doi.org/10.1016/j.brs.2022.01.013

    Article  PubMed  Google Scholar 

  15. Siddiqi SH, Taylor SF, Cooke D, Pascual-Leone A, George MS, Fox MD. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Am J Psychiatry. 2020;177:435–46. https://doi.org/10.1176/appi.ajp.2019.19090915

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brakemeier EL, Luborzewski A, Danker-Hopfe H, Kathmann N, Bajbouj M. Positive predictors for antidepressive response to prefrontal repetitive transcranial magnetic stimulation (rTMS). J Psychiatr Res. 2007;41:395–403. https://doi.org/10.1016/j.jpsychires.2006.01.013

    Article  PubMed  Google Scholar 

  17. Fregni F, Marcolin MA, Myczkowski M, Amiaz R, Hasey G, Rumi DO, et al. Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation. Int J Neuropsychopharmacol. 2006;9:641–54. https://doi.org/10.1017/S1461145705006280

    Article  CAS  PubMed  Google Scholar 

  18. Lisanby SH, Husain MM, Rosenquist PB, Maixner D, Gutierrez R, Krystal A, et al. Daily left prefrontal repetitive transcranial magnetic stimulation in the acute treatment of major depression: clinical predictors of outcome in a multisite, randomized controlled clinical trial. Neuropsychopharmacology. 2009;34:522–34. https://doi.org/10.1038/npp.2008.118

    Article  PubMed  Google Scholar 

  19. Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R, Leuchter B, et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry. 2014;76:517–26. https://doi.org/10.1016/j.biopsych.2014.01.023

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kimbrell TA, Little JT, Dunn RT, Frye MA, Greenberg BD, Wassermann EM, et al. Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry. 1999;46:1603–13. https://doi.org/10.1016/s0006-3223(99)00195-x

    Article  CAS  PubMed  Google Scholar 

  21. Paillère Martinot ML, Martinot JL, Ringuenet D, Galinowski A, Gallarda T, Bellivier F, et al. Baseline brain metabolism in resistant depression and response to transcranial magnetic stimulation. Neuropsychopharmacology. 2011;36:2710–9. https://doi.org/10.1038/npp.2011.161

    Article  CAS  PubMed  Google Scholar 

  22. Kalin NH. The critical relationship between anxiety and depression. Am J Psychiatry. 2020;177:365–7. https://doi.org/10.1176/appi.ajp.2020.20030305

    Article  PubMed  Google Scholar 

  23. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Association; 2013.

  24. Beam W, Borckardt JJ, Reeves ST, George MS. An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul. 2009;2:50–54. https://doi.org/10.1016/j.brs.2008.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mylius V, Ayache SS, Ahdab R, Farhat WH, Zouari HG, Belke M, et al. Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age. NeuroImage. 2013;78:224–32. https://doi.org/10.1016/j.neuroimage.2013.03.061

    Article  CAS  PubMed  Google Scholar 

  26. McDonald WM, Durkalski V, Ball ER, Holtzheimer PE, Pavlicova M, Lisanby SH, et al. Improving the antidepressant efficacy of transcranial magnetic stimulation: maximizing the number of stimulations and treatment location in treatment-resistant depression. Depress Anxiety. 2011;28:973–80. https://doi.org/10.1002/da.20885

    Article  PubMed  Google Scholar 

  27. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65. https://doi.org/10.1152/jn.00338.2011

    Article  PubMed  Google Scholar 

  28. Li J, Kong R, Liègeois R, Orban C, Tan Y, Sun N, et al. Global signal regression strengthens association between resting-state functional connectivity and behavior. NeuroImage. 2019;196:126–41. https://doi.org/10.1016/j.neuroimage.2019.04.016

    Article  PubMed  Google Scholar 

  29. Kong R, Li J, Orban C, Sabuncu MR, Liu H, Schaefer A, et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb Cortex. 2019;26:2533–51. https://doi.org/10.1093/cercor/bhy123

    Article  Google Scholar 

  30. Beck, AT, Steer, RA, & Brown, GK. Beck Depression Inventory–II (BDI-II). APA PsycTests; 1996. https://doi.org/10.1037/t00742-000

  31. Fox MD. Mapping symptoms to brain networks with the human connectome. N Engl J Med. 2018;379:2237–45. https://doi.org/10.1056/NEJMra1706158

    Article  CAS  PubMed  Google Scholar 

  32. Kroenke, K, Spitzer, RL, & Williams, JBW. Patient Health Questionnaire-9 (PHQ-9). APA PsycTests; 1999. https://doi.org/10.1037/t06165-000

  33. Rush AJ, Carmody T, Reimitz P-E. The Inventory of Depressive Symptomatology (IDS): clinician (IDS-C) and Self-Report (IDS-SR) ratings of depressive symptoms. Int J Methods Psychiatr Res. 2000;9:45–59. https://doi.org/10.1002/mpr.79

    Article  Google Scholar 

  34. Jacobs, KM. Brodmann’s areas of the cortex. In JS Kreutzer, J DeLuca, & B Caplan (Eds.), Encyclopedia of clinical neuropsychology. Springer; 2011. https://doi.org/10.1007/978-0-387-79948-3_301

  35. Siddiqi SH, Schaper FLWVJ, Horn A, Hsu J, Padmanabhan JL, Brodtmann A, et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat Hum Behav. 2021;5:1707–16. https://doi.org/10.1038/s41562-021-01161-1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oathes DJ, Zimmerman JP, Duprat R, Japp SS, Scully M, Rosenberg BM, et al. Resting fMRI-guided TMS results in subcortical and brain network modulation indexed by interleaved TMS/fMRI. Exp Brain Res. 2021;239:1165–78. https://doi.org/10.1007/s00221-021-06036-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Thielscher, A, Antunes, A, & Saturnino, GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 222-5). IEEE; 2015. https://doi.org/10.1109/EMBC.2015.7318340

  38. Elbau IG, Lynch CJ, Downar J, Vila-Rodriguez F, Power JD, Solomonov N, et al. Functional connectivity mapping for rTMS target selection in depression. Am J Psychiatry. 2023;180:230–40. https://doi.org/10.1176/appi.ajp.20220306

    Article  PubMed  PubMed Central  Google Scholar 

  39. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, et al. The Human connectome project: a data acquisition perspective. NeuroImage. 2012;62:2222–31. https://doi.org/10.1016/j.neuroimage.2012.02.018

    Article  PubMed  Google Scholar 

  40. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage. 2013;80:105–24. https://doi.org/10.1016/j.neuroimage.2013.04.127

    Article  PubMed  Google Scholar 

  41. Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol. 2009;101:3270–83. https://doi.org/10.1152/jn.90777.2008

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62:782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  43. Hoffmann M, Billot B, Greve DN, Iglesias JE, Fischl B, Dalca AV. SynthMorph: learning contrast-invariant registration without acquired images. IEEE Trans Med Imaging. 2021;41:543–58. https://doi.org/10.1109/TMI.2021.3116879

    Article  Google Scholar 

  44. Iglesias JE. A ready-to-use machine learning tool for symmetric multi-modality registration of brain MRI. Sci Rep. 2023;13:6657 https://doi.org/10.1038/s41598-023-33781-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jenkinson M, Smith SM. A global optimization method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56. https://doi.org/10.1016/s1361-8415(01)00036-6

    Article  CAS  PubMed  Google Scholar 

  46. Jenkinson M, Bannister PR, Brady JM, Smith SM. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–41. https://doi.org/10.1016/s1053-8119(02)91132-8

    Article  PubMed  Google Scholar 

  47. Andersson, JLR, Jenkinson, M, & Smith, S Non-linear registration. FMRIB Technical Report TR07JA2.2010

  48. Harrell FE Jr. Regression Modeling Strategies. New York: Springer-Verlag; 2001. https://doi.org/10.1007/978-1-4757-3462-1

  49. James, G, Witten, D, Hastie, T, & Tibshirani, R. An introduction to statistical learning (8th ed.). New York: Springer Science+Business Media;2017. ISBN 978-1-4614-7138-7

  50. Snee, R. Origins of the variance inflation factor as recalled by Cuthbert Daniel. Technical report. Snee Associates;1981.

  51. Glasser GJ, Winter RF. Critical values of the coefficient of rank correlation for testing the hypothesis of independence. Biometrika. 1961;48:444–8. Oxford University Press. https://doi.org/10.2307/2332767

    Article  Google Scholar 

  52. Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;15:72–101. https://doi.org/10.2307/1412159

    Article  Google Scholar 

  53. James, G, Witten, D, Hastie, T, & Tibshirani, R An introduction to statistical learning (8th ed.). Springer Science+Business Media;2017.

  54. James, G, Witten, D, Hastie, T, & Tibshirani, R. An introduction to statistical learning: with applications in R. New York, NY: Springer;2013. (Chapter 3)

  55. Fox, J Applied regression analysis and generalized linear models (3rd ed.). Los Angeles, CA: Sage Publications;2015.

  56. Agresti, A Categorical data analysis (3rd ed.). Hoboken, NJ: Wiley;2018.

  57. Wright, DB, & London, K Modern regression techniques using R: A practical guide. Thousand Oaks, CA: Sage Publications;2009.

  58. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  59. Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Ser B. 2010;72:417–73. https://doi.org/10.1111/j.1467-9868.2010.00740.x

    Article  Google Scholar 

  60. Avesani P, McPherson B, Hayashi S, Caiafa CF, Henschel R, Garyfallidis E, et al. The open diffusion data derivatives: brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci Data. 2019;6:69 https://doi.org/10.1038/s41597-019-0073-y

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLOS ONE. 2013;8:e68910 https://doi.org/10.1371/journal.pone.0068910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Taylor S, Zvolensky MJ, Cox BJ, Deacon B, Heimberg RG, Ledley DR, et al. Robust dimensions of anxiety sensitivity: development and initial validation of the Anxiety Sensitivity Index-3. Psychol Assess. 2007;19:176–88. https://doi.org/10.1037/1040-3590.19.2.176

    Article  PubMed  Google Scholar 

  63. Herbsman T, Avery D, Ramsey D, Holtzheimer P, Wadjik C, Hardaway F, et al. More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response. Biol Psychiatry. 2009;66:509–15. https://doi.org/10.1016/j.biopsych.2009.04.034

    Article  PubMed  Google Scholar 

  64. Benster, L, Weissman, C, Suprani, F, Toney, K, Afshar, H, Stapper, N, et al. Predictive modeling of response to repetitive transcranial magnetic stimulation in treatment-resistant depression. Research Square. 2024. https://doi.org/10.21203/rs.3.rs-4396926/v1

  65. Li CT, Su TP, Cheng CM, Chen MH, Bai YM, Tsai SJ. Factors associated with antidepressant responses to repetitive transcranial magnetic stimulation in antidepressant-resistant depression. Front Neurosci. 2022;16:1046920 https://doi.org/10.3389/fnins.2022.1046920

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zandberg LJ, Zang Y, McLean CP, Yeh R, Simpson HB, Foa EB. Change in obsessive-compulsive symptoms mediates subsequent change in depressive symptoms during exposure and response prevention. Behav Res Ther. 2015;68:76–81. https://doi.org/10.1016/j.brat.2015.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fox MD, et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci. 2014;111:E4367–E4375. https://doi.org/10.1073/pnas.1405003111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baer L, Trivedi MH, Huz I, Rush AJ, Wisniewski SR, Fava M. Prevalence and impact of obsessive-compulsive symptoms in depression: a STARD report. J Clin Psychiatry. 2015;76:1668–74. https://doi.org/10.4088/JCP.14m09670

    Article  PubMed  Google Scholar 

  69. Sheng J, Liu S, Wang Y, Cui R, Zhang X. The link between depression and chronic pain: neural mechanisms in the brain. Neural Plast. 2017;2017:9724371 https://doi.org/10.1155/2017/9724371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bijsterbosch JD, Ansari TL, Smith S, Gauld O, Zika O, Boessenkool S, et al. Stratification of MDD and GAD patients by resting state brain connectivity predicts cognitive bias. NeuroImage Clin. 2018;19:425–33. https://doi.org/10.1016/j.nicl.2018.04.033

    Article  PubMed  PubMed Central  Google Scholar 

  71. Silk JS, Sequeira SS, Jones NP, Lee KH, Dahl RE, Forbes EE, et al. Subgenual anterior cingulate cortex reactivity to rejection vs. acceptance predicts depressive symptoms among adolescents with an anxiety history. J Clin Child Adolesc Psychol. 2023;52:659–74. https://doi.org/10.1080/15374416.2021.2019048

    Article  PubMed  Google Scholar 

  72. Tuescher O, Protopopescu X, Pan H, Cloitre M, Butler T, Goldstein M, et al. Differential activity of subgenual cingulate and brainstem in panic disorder and PTSD. J Anxiety Disord. 2011;25:251–7. https://doi.org/10.1016/j.janxdis.2010.09.010

    Article  PubMed  Google Scholar 

  73. Zhan C, Liu Y, Wu K, Gao Y, Li X. Structural and functional abnormalities in children with attention-deficit/hyperactivity disorder: a focus on subgenual anterior cingulate cortex. Brain Connect. 2017;7:106–14. https://doi.org/10.1089/brain.2016.0444

    Article  PubMed  PubMed Central  Google Scholar 

  74. Osborne NR, Cheng JC, Rogachov A, Kim JA, Hemington KS, Bosma RL, et al. Abnormal subgenual anterior cingulate circuitry is unique to women but not men with chronic pain. Pain. 2021;162:97–108. https://doi.org/10.1097/j.pain.0000000000002016

    Article  PubMed  Google Scholar 

  75. Siddiqi SH, Fox MD. Targeting symptom-specific networks with transcranial magnetic stimulation. Biol Psychiatry. 2024;95:502–9. https://doi.org/10.1016/j.biopsych.2023.11.011

    Article  PubMed  Google Scholar 

  76. Siddiqi S, Philip NS, Palm S, Arulpragasam A, Barredo J, Bouchard H, et al. A potential neuromodulation target for PTSD in Veterans derived from focal brain lesions. Res Sq. 2024. https://doi.org/10.21203/rs.3.rs-3132332/v1

    Article  PubMed  PubMed Central  Google Scholar 

  77. Brown JC, Kweon J, Sharma P, Siddiqi SH, Isserles M, Ressler KJ. Critically assessing the unanswered questions of how, where, and when to induce plasticity in the posttraumatic stress disorder network with transcranial magnetic stimulation. Biol Psychiatry. 2024;97:392–404. https://doi.org/10.1016/j.biopsych.2024.06.010

    Article  PubMed  Google Scholar 

  78. Isserles M, Tendler A, Roth Y, Bystritsky A, Blumberger DM, Ward H, et al. Deep transcranial magnetic stimulation combined with brief exposure for posttraumatic stress disorder: a prospective multisite randomized trial. Biol Psychiatry. 2021;90:721–8. https://doi.org/10.1016/j.biopsych.2021.04.019

    Article  PubMed  Google Scholar 

  79. Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166:1092–7. https://doi.org/10.1001/archinte.166.10.1092

    Article  PubMed  Google Scholar 

  80. Ning L, Makris N, Camprodon JA, Rathi Y. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation. Brain Stimul. 2019;12:129–38. https://doi.org/10.1016/j.brs.2018.10.004

    Article  PubMed  Google Scholar 

  81. Cash RFH, Cocchi L, Lv J, Wu Y, Fitzgerald PB, Zalesky A. Personalized connectivity-guided DLPFC-TMS for depression: advancing computational feasibility, precision, and reproducibility. Hum Brain Mapp. 2021;42:4155–72. https://doi.org/10.1002/hbm.25330

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cash RFH, Cocchi L, Lv J, Fitzgerald P, Zalesky A. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry. 2020;78:337–9. https://doi.org/10.1001/jamapsychiatry.2020.3794

    Article  PubMed Central  Google Scholar 

  83. Fang K, Niu L, Wen B, Liang L, Tian Y, Hou Y, et al. Individualized resting-state functional connectivity abnormalities unveil two major depressive disorder subtypes with contrasting abnormal patterns of abnormality. Transl Psychiatry. 2025;15:45 https://doi.org/10.1038/s41398-025-03268-9

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang Q, Akram H, Muthuraman M, Gonzalez-Escamilla G, Sheth SA, Oxenford S, et al. Normative vs. patient-specific brain connectivity in deep brain stimulation. NeuroImage. 2021;224:117307 https://doi.org/10.1016/j.neuroimage.2020.117307

    Article  PubMed  Google Scholar 

  85. Cohen A, Soussand L, McManus P, Fox M. GSP1000 preprocessed connectome. Harv Dataverse. 2020. https://doi.org/10.7910/DVN/ILXIKS

    Article  Google Scholar 

Download references

Funding

This research was supported by a grant from the U.S. National Institutes of Health (R01 MH113929-01) awarded to MDF. Additional support was provided in part by the NIGMS-funded COBRE Center for Neuromodulation at Butler Hospital (P20GM130452). MDF has intellectual property on the use of brain connectivity imaging to analyze lesions and guide brain stimulation, is a consultant for Magnus Medical, Soterix, Abbott, and Boston Scientific, and has received research funding from Neuronetics. MDF was supported by grants from the NIH (R01MH113929, R21MH126271, R56AG069086, R21NS123813, R01NS127892, R01MH130666, UM1NS132358), Neuronetics, the Kaye Family Research Endowment, the Ellison / Baszucki Family Foundation, and the Manley Family. SHS is the owner of intellectual property involving the use of brain connectivity to target TMS, scientific consultant for Magnus Medical, investigator-initiated research funding from Neuronetics and Brainsway, speaking fees from Brainsway and Otsuka (for PsychU.org), shareholder in Brainsway (publicly traded) and Magnus Medical (not publicly traded). LLC reports clinical trials contracts with Brown University, Janssen, Neuronetics, and Neurolief; consulting income from Janssen, Neuronetics, Neurolief, Sage Therapeutics, Otsuka, Universal Brain, and Magnus Medical; and a research equipment loan from Nexstim. TB serves as a site Principal Investigator for the Magnus Medical Open Label Clinical Trial. APS is an employee of the Thermo Fisher Scientific with equity compensation. MS is the executive assistant to the CEO of the Nia Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Contributions

MDF conceptualized the study and secured funding. MDF, SHS, LLC, JJT, JCB, DP, APS, STP, WD, SF, CL, ET, LH contributed to data collection. MDF, SK, SHS, JJT, TB, STP, WD, SF, CL, AG, NC, EJ, DL conducted the data analysis. MDF, SK drafted the manuscript. All co-authors provided critical revisions to the manuscript.

Corresponding authors

Correspondence to Sanaz Khosravani or Michael D. Fox.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravani, S., Palm, S.T., Drew, W. et al. Predictive value of subgenual cingulate normative connectivity to TMS treatment site for antidepressant response in routine clinical practice: a prospective, multisite cohort study. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03153-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03153-3

Keywords

Search

Quick links