Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of LXRβ in oligodendrocytes in neuronal survival

Abstract

We have reported that mice in which the liver X receptor β (LXRβ) gene is inactivated lose dopaminergic neurons in the substantia nigra and motor neurons in the ventral horn of the spinal cord. These mice develop progressive hind limb paralysis starting at 6 months of age. Since LXRβ is not expressed in either dopaminergic neurons or motor neurons, we have focused on LXRβ-expressing cells whose function is essential for neuron survival. We now report defects in oligodendrocyte maturation in the absence of LXRβ. At 4 months of age, long before motor neuron loss occurs, there was reduction in expression of the four following genes in oligodendrocytes: The monocarboxylate transporter 1 (MCT1), which is essential for metabolic support of motor neurons; BDNF, a motor neuron trophic factor; 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), a rate-limiting enzyme in cholesterol synthesis; glutamine synthetase (GS), an enzyme crucial for the elimination of neurotoxic glutamate from synapses. Differentiation of ES cells from WT and LXRβ−/− mice into motor neurons/oligodendrocytes revealed that LXRβ−/− cultures showed less arborization of motor neurons and a reduced proportion of mature oligodendrocytes. Our study suggests that defects in glial cells can have profound effects on neuronal survival and that early defective oligodendrocyte maturation can lead to motor neuron death. The expression of LXRβ in oligodendrocytes should be investigated as a target for preventing neuronal loss in diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Loss of LXRβ leads to the loss of neuronal dendrites and motor neuron degeneration in the spinal cord.
Fig. 2: Differentiation of MNPs into mixed motor neurons and oligodendrocytes.
Fig. 3: Decreased MCT1 expression in oligodendrocytes in the spinal cord of LXRβ−/− mice.
Fig. 4: Decreased BDNF expression in oligodendrocytes in the spinal cord of LXRβ−/− mice.
Fig. 5: Decreased HMGCR expression in oligodendrocytes in the spinal cord of LXRβ−/− mice.
Fig. 6: Decreased GS expression in oligodendrocytes in the spinal cord of LXRβ−/− mice.
Fig. 7: No significant difference in the number of total oligodendrocytes in the spinal cord of LXRβ−/− mice.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary files. The datasets of the current study are available from the corresponding author on reasonable request.

References

  1. Jakobsson T, Treuter E, Gustafsson JA, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci. 2012;33:394–404.

    Article  CAS  PubMed  Google Scholar 

  2. Kim HJ, Fan X, Gabbi C, Yakimchuk K, Parini P, Warner M, et al. Liver X receptor beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis-Parkinson’s dementia. Proc Natl Acad Sci USA. 2008;105:2094–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Song XY, Wu WF, Gabbi C, Dai YB, So M, Chaurasiya SP, et al. Retinal and optic nerve degeneration in liver X receptor beta knockout mice. Proc Natl Acad Sci USA. 2019;116:16507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song XY, Wu WF, Dai YB, Xu HW, Roman A, Wang L, et al. Ablation of liver X receptor beta in mice leads to overactive macrophages and death of spiral ganglion neurons. Hear Res. 2022;422:108534.

    Article  PubMed  Google Scholar 

  5. Dodge JC, Jensen EH, Yu J, Sardi SP, Bialas AR, Taksir TV, et al. Neutral lipid cacostasis contributes to disease pathogenesis in amyotrophic lateral sclerosis. J Neurosci. 2020;40:9137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mouzat K, Chudinova A, Polge A, Kantar J, Camu W, Raoul C, et al. Regulation of brain cholesterol: what role do liver X receptors play in neurodegenerative diseases? Int J Mol Sci. 2019;20:3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Younger DS, Brown RH Jr. Amyotrophic lateral sclerosis. Handb Clin Neurol. 2023;196:203–29.

    Article  PubMed  Google Scholar 

  8. Xue YC, Ng CS, Xiang P, Liu H, Zhang K, Mohamud Y, et al. Dysregulation of RNA-Binding proteins in amyotrophic lateral sclerosis. Front Mol Neurosci. 2020;13:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang C, Wang H, Qiao T, Yang B, Aliaga L, Qiu L, et al. Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 2014;111:E1121–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Blokhuis AM, Groen EJ, Koppers M, van den Berg LH, Pasterkamp RJ. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 2013;125:777–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonafede R, Mariotti R. ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci. 2017;11:80.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abdel-Khalik J, Yutuc E, Crick PJ, Gustafsson JA, Warner M, Roman G, et al. Defective cholesterol metabolism in amyotrophic lateral sclerosis. J Lipid Res. 2017;58:267–78.

    Article  CAS  PubMed  Google Scholar 

  13. Agrawal I, Lim YS, Ng SY, Ling SC. Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Transl Neurodegener. 2022;11:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Godoy-Corchuelo JM, Fernandez-Beltran LC, Ali Z, Gil-Moreno MJ, Lopez-Carbonero JI, Guerrero-Sola A, et al. Lipid metabolic alterations in the ALS-FTD spectrum of disorders. Biomedicines. 2022;10:1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wingo AP, Vattathil SM, Liu J, Fan W, Cutler DJ, Levey AI, et al. LDL cholesterol is associated with higher AD neuropathology burden independent of APOE. J Neurol Neurosurg Psychiatry. 2022;93:930–8.

    Article  PubMed  Google Scholar 

  16. Valenza M, Birolini G, Cattaneo E. The translational potential of cholesterol-based therapies for neurological disease. Nat Rev Neurol. 2023;19:583–98.

    Article  PubMed  Google Scholar 

  17. Cheon SY. Impaired cholesterol metabolism, neurons, and neuropsychiatric disorders. Exp Neurobiol. 2023;32:57–67.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci. 2013;16:571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487:443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U, Rudling M, et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest. 2001;107:565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Varshney MK, Inzunza J, Lupu D, Ganapathy V, Antonson P, Ruegg J, et al. Role of estrogen receptor beta in neural differentiation of mouse embryonic stem cells. Proc Natl Acad Sci USA. 2017;114:E10428–E37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song X, Wu W, Dai Y, Warner M, Nalvarte I, Antonson P, et al. Loss of ERbeta in aging LXRalphabeta knockout mice leads to colitis. Int J Mol Sci. 2023;24:12461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andersson S, Gustafsson N, Warner M, Gustafsson JA. Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci USA. 2005;102:3857–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nelissen K, Mulder M, Smets I, Timmermans S, Smeets K, Ameloot M, et al. Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J Neurosci Res. 2012;90:60–71.

    Article  CAS  PubMed  Google Scholar 

  25. Lee JH, Kim H, Park SJ, Woo JH, Joe EH, Jou I. Small heterodimer partner SHP mediates liver X receptor (LXR)-dependent suppression of inflammatory signaling by promoting LXR SUMOylation specifically in astrocytes. Sci Signal. 2016;9:ra78.

    Article  PubMed  Google Scholar 

  26. Bogie JFJ, Vanmierlo T, Vanmol J, Timmermans S, Mailleux J, Nelissen K, et al. Liver X receptor beta deficiency attenuates autoimmune-associated neuroinflammation in a T cell-dependent manner. J Autoimmun. 2021;124:102723.

    Article  CAS  PubMed  Google Scholar 

  27. Song X, Wu W, Warner M, Gustafsson JA. Liver X receptor regulation of glial cell functions in the CNS. Biomedicines. 2022;10:2165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai YB, Wu WF, Huang B, Miao YF, Nadarshina S, Warner M, et al. Liver X receptors regulate cerebrospinal fluid production. Mol Psychiatry. 2016;21:844–56.

    Article  CAS  PubMed  Google Scholar 

  29. Halpain S, Spencer K, Graber S. Dynamics and pathology of dendritic spines. Prog Brain Res. 2005;147:29–37.

    Article  CAS  PubMed  Google Scholar 

  30. Huber N, Hoffmann D, Giniatullina R, Rostalski H, Leskela S, Takalo M, et al. C9orf72 hexanucleotide repeat expansion leads to altered neuronal and dendritic spine morphology and synaptic dysfunction. Neurobiol Dis. 2022;162:105584.

    Article  CAS  PubMed  Google Scholar 

  31. Fogarty MJ, Mu EWH, Lavidis NA, Noakes PG, Bellingham MC. Motor areas show altered dendritic structure in an amyotrophic lateral sclerosis mouse model. Front Neurosci. 2017;11:609.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fogarty MJ, Mu EWH, Lavidis NA, Noakes PG, Bellingham MC. Size-dependent vulnerability of lumbar motor neuron dendritic degeneration in SOD1(G93A) mice. Anat Rec. 2020;303:1455–71.

    Article  CAS  Google Scholar 

  33. Ferraiuolo L, Meyer K, Sherwood TW, Vick J, Likhite S, Frakes A, et al. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc Natl Acad Sci USA. 2016;113:E6496–E505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fisel P, Schaeffeler E, Schwab M. Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci. 2018;11:352–64.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Philips T, Mironova YA, Jouroukhin Y, Chew J, Vidensky S, Farah MH, et al. MCT1 deletion in oligodendrocyte lineage cells causes late-onset hypomyelination and axonal degeneration. Cell Rep. 2021;34:108610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boucanova F, Pollmeier G, Sandor K, Morado Urbina C, Nijssen J, Medard JJ, et al. Disrupted function of lactate transporter MCT1, but not MCT4, in Schwann cells affects the maintenance of motor end-plate innervation. Glia. 2021;69:124–36.

    Article  CAS  PubMed  Google Scholar 

  37. Mouzat K, Molinari N, Kantar J, Polge A, Corcia P, Couratier P, et al. Liver X receptor genes variants modulate ALS phenotype. Mol Neurobiol. 2018;55:1959–65.

    Article  CAS  PubMed  Google Scholar 

  38. Xu Z, Lee A, Nouwens A, Henderson RD, McCombe PA. Mass spectrometry analysis of plasma from amyotrophic lateral sclerosis and control subjects. Amyotroph Lat Scler Frontotemporal Degener. 2018;19:362–76.

    Article  CAS  Google Scholar 

  39. Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: mechanisms and therapeutic perspectives. Cells. 2021;10:565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485:517–21.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ho WY, Chang JC, Lim K, Cazenave-Gassiot A, Nguyen AT, Foo JC, et al. TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination. J Cell Biol. 2021;220:e201910213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mou Y, Dong Y, Chen Z, Denton KR, Duff MO, Blackstone C, et al. Impaired lipid metabolism in astrocytes underlies degeneration of cortical projection neurons in hereditary spastic paraplegia. Acta Neuropathol Commun. 2020;8:214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Byrne DJ, Garcia-Pardo ME, Cole NB, Batnasan B, Heneghan S, Sohail A, et al. Liver X receptor-agonist treatment rescues degeneration in a Drosophila model of hereditary spastic paraplegia. Acta Neuropathol Commun. 2022;10:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wada T, Kang HS, Angers M, Gong H, Bhatia S, Khadem S, et al. Identification of oxysterol 7alpha-hydroxylase (Cyp7b1) as a novel retinoid-related orphan receptor alpha (RORalpha) (NR1F1) target gene and a functional cross-talk between RORalpha and liver X receptor (NR1H3). Mol Pharmacol. 2008;73:891–9.

    Article  CAS  PubMed  Google Scholar 

  45. Jia W, Wei M, Rajani C, Zheng X. Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein Cell. 2021;12:411–25.

    Article  CAS  PubMed  Google Scholar 

  46. Schule R, Siddique T, Deng HX, Yang Y, Donkervoort S, Hansson M, et al. Marked accumulation of 27-hydroxycholesterol in SPG5 patients with hereditary spastic paresis. J Lipid Res. 2010;51:819–23.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xin W, Mironova YA, Shen H, Marino RAM, Waisman A, Lamers WH, et al. Oligodendrocytes support neuronal glutamatergic transmission via expression of glutamine synthetase. Cell Rep. 2019;27:2262–71.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ben Haim L, Schirmer L, Zulji A, Sabeur K, Tiret B, Ribon M, et al. Evidence for glutamine synthetase function in mouse spinal cord oligodendrocytes. Glia. 2021;69:2812–27.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li X, Zhong H, Wang Z, Xiao R, Antonson P, Liu T, et al. Loss of liver X receptor beta in astrocytes leads to anxiety-like behaviors via regulating synaptic transmission in the medial prefrontal cortex in mice. Mol Psychiatry. 2021;26:6380–93.

    Article  CAS  PubMed  Google Scholar 

  50. Lv K, Luo Y, Liu T, Xia M, Gong H, Zhang D, et al. Inactivation of microglial LXRbeta in early postnatal mice impairs microglia homeostasis and causes long-lasting cognitive dysfunction. Proc Natl Acad Sci USA. 2025;122:e2410698122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Warner M, Song X, Gustafsson JA. Liver X and thyroid hormone receptors in neurodegeneration. Genom Psychiatry. 2024;1:11.

    Google Scholar 

Download references

Acknowledgements

J.-Å. G. acknowledges Robert A. Welch Foundation grant E-0004 and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Contributions

XS, MW, and JAG designed the research, analyzed the data, and wrote the manuscript. XS, WW, MV, AR, and MW performed the research. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xiaoyu Song or Jan-Åke Gustafsson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods in this study were performed in accordance with the relevant guidelines and regulations. Ethical approval for this study was obtained from the local Animal Experimentation Ethics Committee for animal experimentation (University of Houston animal protocol 09-036). All participants provided written informed consent before participation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wu, W., Varshney, M. et al. Role of LXRβ in oligodendrocytes in neuronal survival. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03278-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03278-5

Search

Quick links