Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Role of neuroserpin and N-Cadherin in mesenchymal stromal cell modulation of preterm brain injury

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Kinney, H. C. & Volpe, J. J. in Volpe’s Neurology of the Newborn (Sixth Edition) (Volpe, J. J. et al. eds) 389-404 (Elsevier, 2018).

  2. Neil, J. J. & Volpe, J. J. in Volpe’s Neurology of the Newborn (Sixth Edition) (Volpe, J. J. et al. eds) 425-457.e411 (Elsevier, 2018).

  3. van Tilborg, E. et al. Origin and dynamics of Oligodendrocytes in the developing brain: implications for perinatal white matter injury. Glia 66, 221–238 (2018).

    Article  PubMed  Google Scholar 

  4. Judaš, M., Sedmak, G. & Kostović, I. The significance of the subplate for evolution and developmental plasticity of the human brain. Front. Hum. Neurosci. 7, 423 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Galinsky, R. et al. Complex interactions between Hypoxia-Ischemia and Inflammation in preterm brain injury. Dev. Med. Child Neurol. 60, 126–133 (2018).

    Article  PubMed  Google Scholar 

  6. Nair, S. et al. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: role of mitochondria, inflammation, and reactive oxygen species. J. Neurochem. 158, 59–73 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Parr, A. M., Tator, C. H. & Keating, A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant. 40, 609–619 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Song, N., Scholtemeijer, M. & Shah, K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharm. Sci. 41, 653–664 (2020).

    Article  PubMed  CAS  Google Scholar 

  9. Wang, L. W., Hsiung, C. W., Chang, C. P., Lin, M. T. & Chen, S. J. Neuroserpin normalization by mesenchymal stem cell therapy after encephalopathy of prematurity in neonatal rats. Pediatr. Res. (2024) in press.

  10. Dean, J. M. et al. What brakes the preterm brain? An arresting story. Pediatr. Res. 75, 227–233 (2014).

    Article  PubMed  Google Scholar 

  11. McDonald, C. A. et al. Intranasal delivery of mesenchymal stromal cells protects against neonatal hypoxic–ischemic brain injury. Int J. Mol. Sci. 20, 2449 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oppliger, B. et al. Intranasal delivery of umbilical cord-derived mesenchymal stem cells preserves myelination in perinatal brain damage. Stem Cells Dev. 25, 1234–1242 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. Donega, V. et al. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Exp. Neurol. 261, 53–64 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Donega, V. et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS One 8, e51253 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. D’Acunto, E. et al. Neuroserpin: Structure, function, physiology and pathology. Cell. Mol. Life Sci. 78, 6409–6430 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Godinez, A. et al. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol. Life Sci. 79, 172 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cosgrove, B. D. et al. N-Cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat. Mater. 15, 1297–1306 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ma, J., Yu, D., Tong, Y. & Mao, M. Effect of Neuroserpin in a neonatal Hypoxic-Ischemic Injury Model ex vivo. Biol. Res. 45, 357–362 (2012).

    Article  PubMed  Google Scholar 

  19. Kilicdag, H., Akillioglu, K., Kilic Bagır, E., Kose, S. & Erdogan, S. Neuroserpin as an adjuvant therapy for hypothermia on brain injury in neonatal hypoxic-ischemic rats. Am. J. Perinatol. 41, 1538–1543 (2023).

    PubMed  Google Scholar 

  20. Yasuhara, T. et al. Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J. Cereb. Blood Flow. Metab. 28, 1804–1810 (2008).

    Article  PubMed  CAS  Google Scholar 

  21. Hass, R., Kasper, C., Böhm, S. & Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal 9, 12 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

TP receives funding from the Cerebral Palsy Alliance and MRFF. AM receives funding from NHMRC, MRFF, CPA, NSCFA and Lions Cord Blood Foundation. This article was not linked to any specific funding.

Author information

Authors and Affiliations

Authors

Contributions

T.P. and A.M. drafted and revised the article.

Corresponding author

Correspondence to Atul Malhotra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penny, T.R., Malhotra, A. Role of neuroserpin and N-Cadherin in mesenchymal stromal cell modulation of preterm brain injury. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03708-0

Search

Quick links