Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isoliensinine inhibits mitophagy and sensitizes T cell malignancies for STING-mediated NK clearance

Abstract

Mitochondrial DNA (mtDNA) damage and accumulation activate the cGAS-STING DNA-sensing pathway, which promotes immune clearance of tumor cells. Maintenance of the cytosolic level of mtDNA is key to sustain immune activation. T cell malignancies (T-CMs) are a general name of diseases with abnormal clonal proliferation of T lymphocytes at various stages. Immunotherapy of T-CMs is challenged by the lack of specific antigens to discriminate T-CMs from normal T cells. As intrinsic STING activation can promote the clearance of T-CMs by immune cells, we herein explored whether isoliensinine (IsoL), a natural compound from Nelumbinis Plumula could enhance NK clearance by mtDNA-mediated immune responses in tumor cells. To investigate whether IsoL modulated immune recognition and clearance of T-CMs, we pre-treated three T-CM cell lines (Jurkat, Molt4 and Hut102) with IsoL then co-cultured with NK-92MI cells. We showed that IsoL pre-treatment promoted cytosolic mtDNA accumulation by inducing ROS-dependent mitochondrial damage and inhibiting mitophagy via peroxiredoxin 1 (PRDX1), an antioxidant enzyme. Loss of PRDX1 in T-CMs also induced ROS-dependent mitochondrial DNA damage, and blocked mitophagy by preventing accumulation of mature PINK1, which was required to initiate mitophagy via recruiting Parkin to the damaged mitochondria. Remarkably, IsoL could induce expression of activating ligands in vitro, enhance NK cell infiltrations, and increase apoptosis of T-CMs. Moreover, we demonstrated that IsoL could sensitize T-CMs for NK clearance in vitro and in vivo. These results suggest that IsoL could be a potential therapeutic agent to enhance immune therapy of T-CMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isoliensinine enhances cytosolic dsDNA levels, activates STING, and promotes immune clearance of T cell malignancies.
Fig. 2: T cell malignancies possess high anti-oxidant ability, and isoliensinine promotes cytosolic dsDNA levels, STING activation and immune clearance by inducing ROS.
Fig. 3: FCCP induces clearance of mitochondria by mitophagy, while isoliensinine blocks mitophagy.
Fig. 4: Isoliensinine binds to peroxiredoxin 1 and peroxiredoxin 1 plays the anti-oxidant effects in T cell malignancies.
Fig. 5: Inhibition of PRDX1 blocks mature of PINK1 in T cell malignancies.
Fig. 6: The anti-T cell malignancies effect of isoliensinine in vivo.

Similar content being viewed by others

Data availability

Data supporting the findings described in this manuscript are available in the article, supplementary materials and from the corresponding author upon request. Source data about bioinformation are provided with this paper.

References

  1. Leoncin M, La Starza R, Roti G, Pagliaro L, Bassan R, Mecucci C. Modern treatment approaches to adult acute T-lymphoblastic and myeloid/T-lymphoblastic leukemia: from current standards to precision medicine. Curr Opin Oncol. 2022;34:738–47.

    Article  PubMed  Google Scholar 

  2. Hu P, Li H, Sun W, Wang H, Yu X, Qing Y, et al. Cholesterol-associated lysosomal disorder triggers cell death of hematological malignancy: Dynamic analysis on cytotoxic effects of LW-218. Acta Pharm Sin B. 2021;11:3178–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res. 2022;10:12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhao X, Pan X, Wang Y, Zhang Y. Targeting neoantigens for cancer immunotherapy. Biomark Res. 2021;9:61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maciocia PM, Wawrzyniecka PA, Philip B, Ricciardelli I, Akarca AU, Onuoha SC, et al. Targeting the T cell receptor beta-chain constant region for immunotherapy of T cell malignancies. Nat Med. 2017;23:1416–23.

    Article  CAS  PubMed  Google Scholar 

  6. Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol. 2023;33:630–48.

    Article  CAS  PubMed  Google Scholar 

  7. Chen M, Linstra R, van Vugt M. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Acta Rev Cancer. 2022;1877:188661.

    Article  CAS  PubMed  Google Scholar 

  8. Chabanon RM, Rouanne M, Lord CJ, Soria JC, Pasero P, Postel-Vinay S. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat Rev Cancer. 2021;21:701–17.

    Article  CAS  PubMed  Google Scholar 

  9. Oduro PK, Zheng X, Wei J, Yang Y, Wang Y, Zhang H, et al. The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Acta Pharm Sin B. 2022;12:50–75.

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh M, Saha S, Li J, Montrose DC, Martinez LA. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol Cell. 2023;83:266–80.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pan R, Ryan J, Pan D, Wucherpfennig KW, Letai A. Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. Cell. 2022;185:1521–1538.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, Markovits E, et al. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell. 2019;179:236–250.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bai R, Cui J. Mitochondrial immune regulation and anti-tumor immunotherapy strategies targeting mitochondria. Cancer Lett. 2023;564:216223.

    Article  CAS  PubMed  Google Scholar 

  14. Liang JL, Jin XK, Zhang SM, Huang QX, Ji P, Deng XC, et al. Specific activation of cGAS-STING pathway by nanotherapeutics-mediated ferroptosis evoked endogenous signaling for boosting systemic tumor immunotherapy. Sci Bull. 2023;68:622–36.

    Article  CAS  Google Scholar 

  15. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42.

    Article  CAS  PubMed  Google Scholar 

  16. Xie XQ, Yang Y, Wang Q, Liu HF, Fang XY, Li CL, et al. Targeting ATAD3A-PINK1-mitophagy axis overcomes chemoimmunotherapy resistance by redirecting PD-L1 to mitochondria. Cell Res. 2023;33:215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13:736–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poole LP, Macleod KF. Mitophagy in tumorigenesis and metastasis. Cell Mol Life Sci. 2021;78:3817–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Z, Wang M, Wang X, Bu Q, Wang Q, Su W, et al. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA-cGAS-STING signaling in macrophages during acute liver injury. Redox Biol. 2022;52:102305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ding C, Fan X, Wu G. Peroxiredoxin 1 - an antioxidant enzyme in cancer. J Cell Mol Med. 2017;21:193–202.

    Article  CAS  PubMed  Google Scholar 

  21. Qing Y, Guo Y, Zhao Q, Hu P, Li H, Yu X, et al. Targeting lysosomal HSP70 induces acid sphingomyelinase-mediated disturbance of lipid metabolism and leads to cell death in T cell malignancies. Clin Transl Med. 2023;13:e1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang GM, Sun J, Pan Y, Zhang JL, Xiao M, Zhu MS. Isolation and identification of a tribenzylisoquinoline alkaloid from Nelumbo nucifera Gaertn, a novel potential smooth muscle relaxant. Fitoterapia. 2018;124:58–65.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang JZ, Fang YF, Wei HY, Zhu P, Liu M, Yuan WG, et al. A remarkably diverse and well-organized virus community in a filter-feeding oyster. Microbiome. 2023;11:2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA. 2009;106:21984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin Z, Wang F, Shang Z, Lin W. Biochemical and structural analyses reveal critical residues in delta subunit affecting its bindings to beta’ subunit of Staphylococcus aureus RNA polymerase. Biochem Biophys Res Commun. 2021;545:98–104.

    Article  CAS  PubMed  Google Scholar 

  26. Goodsell DS, Sanner MF, Olson AJ, Forli S. The AutoDock suite at 30. Protein Sci. 2021;30:31–43.

    Article  CAS  PubMed  Google Scholar 

  27. Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6:254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng Y, Li HL, Zhou ZW, Long HZ, Gao LCJFIP. Isoliensinine: A natural compound with “Drug-Like” potential. Front Pharmacol. 2021;12:630385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samson N, Ablasser A. The cGAS-STING pathway and cancer. Nat Cancer. 2022;3:1452–63.

    Article  CAS  PubMed  Google Scholar 

  30. Bushnell GG, Sharma D, Wilmot HC, Zheng M, Fashina TD, Hutchens CM, et al. Natural killer cell regulation of breast cancer stem cells mediates metastatic dormancy. Cancer Res. 2024;84:3337–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu L, Yang C, Zhou X, Wu L, Hong X, Li W, et al. STING signaling promotes NK cell antitumor immunity and maintains a reservoir of TCF-1+ NK cells. Cell Rep. 2023;42:113108.

    Article  CAS  PubMed  Google Scholar 

  32. Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther. 2021;6:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baatarjav C, Komada T, Karasawa T, Yamada N, Sampilvanjil A, Matsumura T, et al. dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury. Cell Death Differ. 2022;29:2487–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antiochos B, Matyszewski M, Sohn J, Casciola-Rosen L, Rosen A. IFI16 filament formation in salivary epithelial cells shapes the anti-IFI16 immune response in Sjogren’s syndrome. JCI Insight. 2018;3:e120179.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Collins PL, Purman C, Porter SI, Nganga V, Saini A, Hayer KE, et al. DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat Commun. 2020;11:3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teresak P, Lapao A, Subic N, Boya P, Elazar Z, Simonsen A. Regulation of PRKN-independent mitophagy. Autophagy. 2022;18:24–39.

    Article  CAS  PubMed  Google Scholar 

  37. Ren YS, Li HL, Piao XH, Yang ZY, Wang SM, Ge YW. Drug affinity responsive target stability (DARTS) accelerated small molecules target discovery: Principles and application. Biochem Pharmacol. 2021;194:114798.

    Article  CAS  PubMed  Google Scholar 

  38. Xu H, Zhao H, Ding C, Jiang D, Zhao Z, Li Y, et al. Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1. Signal Transduct Target Ther. 2023;8:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Egler RA, Fernandes E, Rothermund K, Sereika S, de Souza-Pinto N, Jaruga P, et al. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene. 2005;24:8038–50.

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, et al. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev. 2023;84:101817.

    Article  CAS  PubMed  Google Scholar 

  41. Science, D.o.l.a. Strain introduction. 2022; Available from: https://dlas.bjmu.edu.cn/fwzn2022/gydwpx/947c90cfff3049079270d3dc60631807.htm.

  42. Fleischer LC, Spencer HT, Raikar SS. Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. J Hematol Oncol. 2019;12:141.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Toner K, Bollard CM, Dave H. T-cell therapies for T-cell lymphoma. Cytotherapy. 2019;21:935–42.

    Article  CAS  PubMed  Google Scholar 

  44. Pocock R, Farah N, Richardson SE, Mansour MR. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia. Br J Haematol. 2021;194:28–43.

    Article  PubMed  Google Scholar 

  45. Chen KH, Wada M, Pinz KG, Liu H, Lin KW, Jares A, et al. Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia. 2017;31:2151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bayon-Calderon F, Toribio ML, Gonzalez-Garcia S. Facts and challenges in immunotherapy for T-cell acute lymphoblastic leukemia. Int J Mol Sci. 2020;21:1.

    Article  Google Scholar 

  47. Guan X, Ruan Y, Che X, Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Radic Biol Med. 2024;210:120–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lv C, Huang Y, Wang Q, Wang C, Hu H, Zhang H, et al. Ainsliadimer A induces ROS-mediated apoptosis in colorectal cancer cells via directly targeting peroxiredoxin 1 and 2. Cell Chem Biol. 2023;30:295–307.e5.

    Article  CAS  PubMed  Google Scholar 

  49. Jin K, Shi Y, Zhang H, Zhangyuan G, Wang F, Li S, et al. A TNFalpha/Miz1-positive feedback loop inhibits mitophagy in hepatocytes and propagates non-alcoholic steatohepatitis. J Hepatol. 2023;79:403–16.

    Article  CAS  PubMed  Google Scholar 

  50. Patin EC, Dillon MT, Nenclares P, Grove L, Soliman H, Leslie I, et al. Harnessing radiotherapy-induced NK-cell activity by combining DNA damage-response inhibition and immune checkpoint blockade. J Immunother Cancer. 2022;10:1.

    Article  Google Scholar 

  51. Berger G, Knelson EH, Jimenez-Macias JL, Nowicki MO, Han S, Panagioti E, et al. STING activation promotes robust immune response and NK cell-mediated tumor regression in glioblastoma models. Proc Natl Acad Sci USA. 2022;119:e2111003119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee LJ, Hassan N, Idris SZ, Subbiah SK, Seow HF, Mohtaruddin N, et al. Differential regulation of NK cell receptors in acute lymphoblastic leukemia. J Immunol Res. 2022;2022:7972039.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol. 2021;14:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Acebes-Huerta A, Lorenzo-Herrero S, Folgueras AR, Huergo-Zapico L, Lopez-Larrea C, Lopez-Soto A, et al. Drug-induced hyperploidy stimulates an antitumor NK cell response mediated by NKG2D and DNAM-1 receptors. Oncoimmunology. 2016;5:e1074378.

    Article  PubMed  Google Scholar 

  55. Schmiedel D, Mandelboim O. NKG2D ligands-critical targets for cancer immune escape and therapy. Front Immunol. 2018;9:2040.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bachiller M, Perez-Amill L, Battram AM, Carne SC, Najjar A, Verhoeyen E, et al. NK cells enhance CAR-T cell antitumor efficacy by enhancing immune/tumor cells cluster formation and improving CAR-T cell fitness. J Immunother Cancer. 2021;9:e002866.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol. 2021;14:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tiwari RK, Rawat SG, Gupta VK, Jaiswara PK, Sonker P, Kumar S, et al. Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact. 2023;369:110278.

    Article  CAS  PubMed  Google Scholar 

  59. Silic-Benussi M, Sharova E, Ciccarese F, Cavallari I, Raimondi V, Urso L, et al. mTOR inhibition downregulates glucose-6-phosphate dehydrogenase and induces ROS-dependent death in T-cell acute lymphoblastic leukemia cells. Redox Biol. 2022;51:102268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang J, Liu X, Qiu Y, Shi Y, Cai J, Wang B, et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J Hematol Oncol. 2018;11:11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the kind support we received from Prof. Qing-long Guo, Prof. Hui Hui, and Dr. Hui Li from China Pharmaceutical University, and Wan-yu Gan and De-hui Wang from NJUCM. This work was supported by the National Natural Science Foundation of China (82474123, 82204420, 82004039, 82404924), Natural Science Foundation of Jiangsu province (BK20220474, BK20230459), National excellent youth cultivation project of NJUCM (RC202408), Chinese medicine first-class scientific research and cultivation project of NJUCM (ZYXPY2024-007, ZYXYL2024-006), and 2023 Supported by Jiangsu Science and Technology Association Youth Science and Technology Talent Lifting Project (TJ-2023-060).

Author information

Authors and Affiliations

Authors

Contributions

PH, YP, and GMY (conceptualization, methodology, formal analysis, investigation, visualization, data curation, funding acquisition and writing of original draft and revision); XG and XLZ (investigation); SBS (writing of original draft); YJQ (investigation, writing of original draft, and funding support); JC (funding support, revision).

Corresponding authors

Correspondence to San-bing Shen, Yang Pan or Po Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All experimental protocols of animals were strictly conformed to the guidelines for the Guide of the Care and Use of Laboratory Animals and were approved by the Ethical Committee of Nanjing University of Chinese Medicine (202401A050, 202412A009). The tumor volume in Fig. 6 was not more than 10% of the original body weight of the mice. These tumors usually have a hemispherical appearance. In the survival statistics, the weight loss level of mice did not exceed 20% of the original body weight.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, X., Yang, Gm., Zhang, Xl. et al. Isoliensinine inhibits mitophagy and sensitizes T cell malignancies for STING-mediated NK clearance. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01636-1

Keywords

Search

Quick links