Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bacteria, stem cells and cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacteria activate epithelial stem cells in wound repair and cancer.

References

  1. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Heal. 2020;8:e180–190.

    Google Scholar 

  2. Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumor virology. Nat Rev Cancer. 2010;10:878–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. El Tekle G, Garrett WS. Bacteria in cancer initiation, promotion and progression. Nat Rev Cancer. 2023;23:600–18.

    CAS  PubMed  Google Scholar 

  4. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25:679–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368:973–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schorr L, Mathies M, Elinav E, Puschhof J. Intracellular bacteria in cancer—prospects and debates. npj Biofilms Microbiomes. 2023;9:1–13.

    Google Scholar 

  7. Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 2023;20:429–52.

    PubMed  Google Scholar 

  9. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    CAS  PubMed  Google Scholar 

  10. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun J. Enteric bacteria and cancer stem cells. Cancers (Basel). 2010;3:285–97.

    PubMed  Google Scholar 

  13. Díaz-Díaz LM, Rodríguez-Villafañe A, García-Arrarás JE. The role of the microbiota in regeneration-associated processes. Front Cell Dev Biol. 2021;9:768783.

    PubMed  Google Scholar 

  14. Buchon N, Broderick NA, Lemaitre B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol. 2013;11:615–26.

    CAS  PubMed  Google Scholar 

  15. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.

    CAS  PubMed  Google Scholar 

  16. Wang G, Sweren E, Liu H, Wier E, Alphonse MP, Chen R, et al. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe [Internet]. 2021;29:777–91.e6. http://www.cell.com/article/S1931312821001311/fulltext

    CAS  PubMed  Google Scholar 

  17. Munir S, Basu A, Maity P, Krug L, Haas P, Jiang D, et al. TLR4‐dependent shaping of the wound site by MSCs accelerates wound healing. EMBO Rep [Internet]. 2020 May 6 [cited 2024 Oct 3];21. Available from: https://www.embopress.org/doi/10.15252/embr.201948777

  18. Nigro G, Rossi R, Commere P-H, Jay P, Sansonetti PJ. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe. 2014;15:792–8.

    CAS  PubMed  Google Scholar 

  19. Lindemans CA, Calafiore M, Mertelsmann AM, O’Connor MH, Dudakov JA, Jenq RR, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature [Internet]. 2016;529:307–15. http://www.nature.com/articles/nature17039

    CAS  PubMed  Google Scholar 

  21. Naik S, Larsen SB, Cowley CJ, Fuchs E. Two to tango: dialog between immunity and stem cells in health and disease. Cell. 2018;175:908–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schäfer M, Werner S. Cancer as an overhealing wound: An old hypothesis revisited. Nat Rev Mol Cell Biol. 2008;9:628–38.

    PubMed  Google Scholar 

  23. Wizenty J, Müllerke S, Kolesnichenko M, Heuberger J, Lin M, Fischer A, et al. Gastric stem cells promote inflammation and gland remodeling in response to Helicobacter pylori via Rspo3‐Lgr4 axis. EMBO J. 2022;41:1–19.

    Google Scholar 

  24. Cavallucci V, Palucci I, Fidaleo M, Mercuri A, Masi L, Emoli V, et al. Proinflammatory and cancer-promoting pathobiont Fusobacterium nucleatum directly targets colorectal cancer stem cells. Biomolecules [Internet]. 2022;12:1256.

    CAS  PubMed  Google Scholar 

  25. Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011;23:473–80. 1

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Metidji A, Omenetti S, Crotta S, Li Y, Nye E, Ross E, et al. The Environmental Sensor AHR Protects from Inflammatory Damage by Maintaining Intestinal Stem Cell Homeostasis and Barrier Integrity. Immunity. 2018;49:353–62.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Slowicka K, Petta I, Blancke G, Hoste E, Dumas E, Sze M, et al. Zeb2 drives invasive and microbiota-dependent colon carcinoma. Nat Cancer. 2020;1:620–34.

    CAS  PubMed  Google Scholar 

  28. Pontarollo G, Kollar B, Mann A, Khuu MP, Kiouptsi K, Bayer F, et al. Commensal bacteria weaken the intestinal barrier by suppressing epithelial neuropilin-1 and Hedgehog signaling. Nat Metab. 2023;5:1174–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358:1443–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F, et al. Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther. 2022;13:1–10.

    Google Scholar 

  31. Yuan W, Zhang Q, Gu D, Lu C, Dixit D, Gimple RC, et al. Dual role of CXCL8 in maintaining the mesenchymal state of glioblastoma stem cells and M2-like tumor-associated macrophages. Clin Cancer Res. 2023;29:3779–92.

    CAS  PubMed  Google Scholar 

  32. Volonté A, Di Tomaso T, Spinelli M, Todaro M, Sanvito F, Albarello L, et al. Cancer-Initiating Cells from Colorectal Cancer Patients Escape from T Cell–Mediated Immunosurveillance In Vitro through Membrane-Bound IL-4. J Immunol. 2014;192:523–32.

    PubMed  Google Scholar 

  33. Zheng X, Liu R, Zhou C, Yu H, Luo W, Zhu J, et al. ANGPTL4-mediated promotion of glycolysis facilitates the colonization of Fusobacterium nucleatum in colorectal cancer. Cancer Res. 2021;81:6157–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kalaora S, Nagler A, Nejman D, Alon M, Barbolin C, Barnea E, et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature. 2021;592:138–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Galeano Niño JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A, Barber B, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 2022;611:810–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Original research performed in the author’s laboratory was funded by the Italian Ministry of University and Research, PRIN – Bando 2022 PNRR Prot. P202243FBL, and Università Cattolica del Sacro Cuore intramural grant D3.2 2021.

Author information

Authors and Affiliations

Authors

Contributions

GP conceived, wrote, revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Giovambattista Pani.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pani, G. Bacteria, stem cells and cancer. Cancer Gene Ther 32, 269–272 (2025). https://doi.org/10.1038/s41417-025-00876-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00876-x

Search

Quick links