Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Old versus new: upstream and downstream of promyelocytic leukemia zinc finger protein

Abstract

Promyelocytic leukemia zinc finger (PLZF) is a member of the zinc finger protein family and has been extensively studied due to its crucial role in influencing stem cell self-renewal, spermatogenesis, T cell differentiation, tumorigenesis, and development. Its function is regulated by multidimensional and multilevel regulation. Recent studies have explored the mechanism of action of PLZF in different diseases and related treatment strategies. This study aimed to summarize the regulatory mechanisms underlying PLZF expression and function, and update the latest PLZF regulatory targets and interacting molecules. We also summarized the mechanism by which PLZF promoted the transcriptional activation of target genes, besides its role as a transcriptional repressor. This study revealed a more detailed upstream and downstream regulatory mechanism of PLZF, providing directions for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of PLZF fragment deletion and fusion gene.
Fig. 2: Schematic representation of the multiple mechanisms that regulate PLZF function, expression, and protein stability.
Fig. 3: Evolution of PLZF transcriptional regulation research fields in the past two decades.

Similar content being viewed by others

References

  1. Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise review: balancing stem cell self-renewal and differentiation with PLZF. Stem Cells. 2016;34:277–87.

    Article  CAS  PubMed  Google Scholar 

  2. Kikugawa T, Kinugasa Y, Shiraishi K, Nanba D, Nakashiro K, Tanji N, et al. PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation. Prostate. 2006;66:1092–9.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB transcription factors: key regulators of the development, differentiation and effector function of T cells. Front Immunol. 2021;12:713294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiao GQ, Unger P, Yang Q, Kinoshita Y, Singh K, McMahon L, et al. Loss of PLZF expression in prostate cancer by immunohistochemistry correlates with tumor aggressiveness and metastasis. PLoS One. 2015;10:e0121318.

    Article  PubMed  PubMed Central  Google Scholar 

  5. He J, Wu M, Xiong L, Gong Y, Yu R, Peng W, et al. BTB/POZ zinc finger protein ZBTB16 inhibits breast cancer proliferation and metastasis through upregulating ZBTB28 and antagonizing BCL6/ZBTB27. Clin Epigenetics. 2020;12:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hui AW, Lau HW, Cao CY, Zhou JW, Lai PB, Tsui SK. Downregulation of PLZF in human hepatocellular carcinoma and its clinical significance. Oncol Rep. 2015;33:397–402.

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Wang L, Guo S, Bao Y, Ma Y, Yan F, et al. Hypermethylation reduces expression of tumor-suppressor PLZF and regulates proliferation and apoptosis in non-small-cell lung cancers. FASEB J. 2013;27:4194–203.

    Article  CAS  PubMed  Google Scholar 

  8. Brunner G, Reitz M, Schwipper V, Tilkorn H, Lippold A, Biess B, et al. Increased expression of the tumor suppressor PLZF is a continuous predictor of long-term survival in malignant melanoma patients. Cancer Biother Radiopharm. 2008;23:451–9.

    CAS  PubMed  Google Scholar 

  9. Choi WI, Kim MY, Jeon BN, Koh DI, Yun CO, Li Y, et al. Role of promyelocytic leukemia zinc finger (PLZF) in cell proliferation and cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) gene repression. J Biol Chem. 2014;289:18625–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suliman BA, Xu D, Williams BR. The promyelocytic leukemia zinc finger protein: two decades of molecular oncology. Front Oncol. 2012;2:74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li JY, English MA, Ball HJ, Yeyati PL, Waxman S, Licht JD. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J Biol Chem. 1997;272:22447–55.

    Article  CAS  PubMed  Google Scholar 

  12. Du X, Yang D, Yu X, Wei Y, Chen W, Zhai Y, et al. PLZF protein forms a complex with protein TET1 to target TCF7L2 in undifferentiated spermatogonia. Theriogenology. 2024;215:321–33.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang T, Dong K, Liang W, Xu D, Xia H, Geng J, et al. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. Elife. 2015;4:e06734.

    Article  PubMed  PubMed Central  Google Scholar 

  14. David G, Alland L, Hong SH, Wong CW, DePinho RA, Dejean A. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene. 1998;16:2549–56.

    Article  CAS  PubMed  Google Scholar 

  15. Huynh KD, Bardwell VJ. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene. 1998;17:2473–84.

    Article  CAS  PubMed  Google Scholar 

  16. Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, et al. HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF. Oncogene. 2004;23:8777–84.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, et al. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 1993;12:1161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet. 1998;18:126–35.

    Article  CAS  PubMed  Google Scholar 

  19. Hong SH, David G, Wong CW, Dejean A, Privalsky ML. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA. 1997;94:9028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hauksdóttir H, Privalsky ML. DNA recognition by the aberrant retinoic acid receptors implicated in human acute promyelocytic leukemia. Cell Growth Differ. 2001;12:85–98.

    PubMed  PubMed Central  Google Scholar 

  21. Girard N, Tremblay M, Humbert M, Grondin B, Haman A, Labrecque J, et al. RARα-PLZF oncogene inhibits C/EBPα function in myeloid cells. Proc Natl Acad Sci USA. 2013;110:13522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen B, Jiang L, Zhong ML, Li JF, Li BS, Peng LJ, et al. Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2018;115:373–8.

    Article  CAS  PubMed  Google Scholar 

  23. Jain S, Abraham A. BCR-ABL1-like B-acute lymphoblastic leukemia/lymphoma: a comprehensive review. Arch Pathol Lab Med. 2020;144:150–5.

    Article  CAS  PubMed  Google Scholar 

  24. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsieh CL, Botta G, Gao S, Li T, Van Allen EM, Treacy DJ, et al. PLZF, a tumor suppressor genetically lost in metastatic castration-resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res. 2015;75:1944–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Melnick AM, Westendorf JJ, Polinger A, Carlile GW, Arai S, Ball HJ, et al. The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol. 2000;20:2075–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ko JH, Son W, Bae GY, Kang JH, Oh W, Yoo OJ. A new hepatocytic isoform of PLZF lacking the BTB domain interacts with ATP7B, the Wilson disease protein, and positively regulates ERK signal transduction. J Cell Biochem. 2006;99:719–34.

    Article  CAS  PubMed  Google Scholar 

  28. Jones C, St-Jean S, Fréchette I, Bergeron D, Rivard N, Boudreau F. Identification of a novel promyelocytic leukemia zinc-finger isoform required for colorectal cancer cell growth and survival. Int J Cancer. 2013;133:58–66.

    Article  CAS  PubMed  Google Scholar 

  29. Sobieszczuk DF, Poliakov A, Xu Q, Wilkinson DG. A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. Genes Dev. 2010;24:206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang WC, Shih HM. The deubiquitinating enzyme USP37 regulates the oncogenic fusion protein PLZF/RARA stability. Oncogene. 2012;32:5167–75.

    Article  PubMed  Google Scholar 

  31. Costoya JA, Hobbs RM, Pandolfi PP. Cyclin-dependent kinase antagonizes promyelocytic leukemia zinc-finger through phosphorylation. Oncogene. 2008;27:3789–96.

    Article  CAS  PubMed  Google Scholar 

  32. Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, et al. A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. Embo j. 2003;22:6471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee JM, Hammarén HM, Savitski MM, Baek SH. Control of protein stability by post-translational modifications. Nat Commun. 2023;14:201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vasanthakumar A, Xu D, Lun AT, Kueh AJ, van Gisbergen KP, Iannarella N, et al. A non-canonical function of Ezh2 preserves immune homeostasis. EMBO Rep. 2017;18:619–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parrado A, Robledo M, Moya-Quiles MR, Marín LA, Chomienne C, Padua RA, et al. The promyelocytic leukemia zinc finger protein down-regulates apoptosis and expression of the proapoptotic BID protein in lymphocytes. Proc Natl Acad Sci USA. 2004;101:1898–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang SI, Choi HW, Kim IY. Redox-mediated modification of PLZF by SUMO-1 and ubiquitin. Biochem Biophys Res Commun. 2008;369:1209–14.

    Article  CAS  PubMed  Google Scholar 

  37. Chao TT, Chang CC, Shih HM. SUMO modification modulates the transrepression activity of PLZF. Biochem Biophys Res Commun. 2007;358:475–82.

    Article  CAS  PubMed  Google Scholar 

  38. Guidez F, Howell L, Isalan M, Cebrat M, Alani RM, Ivins S, et al. Histone acetyltransferase activity of p300 is required for transcriptional repression by the promyelocytic leukemia zinc finger protein. Mol Cell Biol. 2005;25:5552–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McConnell MJ, Durand L, Langley E, Coste-Sarguet L, Zelent A, Chomienne C, et al. Post transcriptional control of the epigenetic stem cell regulator PLZF by sirtuin and HDAC deacetylases. Epigenetics Chromatin. 2015;8:38.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Klibi J, Joseph C, Delord M, Teissandier A, Lucas B, Chomienne C, et al. PLZF acetylation levels regulate NKT cell differentiation. J Immunol. 2021;207:809–23.

    Article  CAS  PubMed  Google Scholar 

  41. Sadler AJ, Suliman BA, Yu L, Yuan X, Wang D, Irving AT, et al. The acetyltransferase HAT1 moderates the NF-kappaB response by regulating the transcription factor PLZF. Nat Commun. 2015;6:6795.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng R, Sun H, Qiao X, Chen X. LncRNA XIST facilitates the odontogenic differentiation of dental pulp stem cells via the FUS/ZBTB16. J Appl Oral Sci. 2024;32:e20230444.

    Article  CAS  PubMed  Google Scholar 

  43. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mao Y, Su X, Guo Q, Yao X, Zhao Q, Guo Y, et al. Long non-coding RNA LINC00930 targeting miR-6792-3p/ZBTB16 regulates the proliferation and EMT of pancreatic cancer. BMC Cancer. 2024;24:638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhuang SH, Meng CC, Fu JJ, Huang J. Long non‐coding RNA ELFN1‐AS1‐mediated ZBTB16 inhibition augments the progression of gastric cancer by activating the PI3K/AKT axis. Kaohsiung J Med Sci. 2022;38:621–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen Y, Kuroki Y, Shaw G, Pask AJ, Yu H, Toyoda A, et al. Androgen and oestrogen affect the expression of long non-coding RNAs during phallus development in a marsupial. Non-Coding RNA. 2019;5:3.

    Article  CAS  Google Scholar 

  47. Daguia Zambe JC, Zhai Y, Zhou Z, Du X, Wei Y, Ma F, et al. miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells. J Cell Physiol. 2018;233:4652–65.

    Article  CAS  PubMed  Google Scholar 

  48. Pobezinsky LA, Etzensperger R, Jeurling S, Alag A, Kadakia T, McCaughtry TM, et al. Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function. Nat Immunol. 2015;16:517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li T, Wang T, Yan L, Ma C. Identification of potential novel biomarkers for abdominal aortic aneurysm based on comprehensive analysis of circRNA-miRNA-mRNA networks. Exp Ther Med. 2021;22:1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao S, Chen Q, Kang X, Kong B, Wang Z. Aberrantly expressed genes and miRNAs in slow transit constipation based on RNA‐Seq analysis. BioMed Res Int. 2018;2018:2617432.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu Q-Y, Miao Y, Wang X-H, Wang P, Cheng Z-C, Qian T-M. Increased levels of miR-3099 induced by peripheral nerve injury promote Schwann cell proliferation and migration. Neural Regen Res. 2019;14:525–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao F, Zhu L, Yang J, Wu X, Zhao Z, Xu B, et al. Whole transcriptome sequencing identified CircRNA profiles and the related networks in schizophrenia. J Mol Neurosci. 2022;72:1622–35.

    Article  CAS  PubMed  Google Scholar 

  53. Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021;37:1012–27.

    Article  CAS  PubMed  Google Scholar 

  54. Fahnenstich J, Nandy A, Milde-Langosch K, Schneider-Merck T, Walther N, Gellersen B. Promyelocytic leukaemia zinc finger protein (PLZF) is a glucocorticoid- and progesterone-induced transcription factor in human endometrial stromal cells and myometrial smooth muscle cells. Mol Hum Reprod. 2003;9:611–23.

    Article  CAS  PubMed  Google Scholar 

  55. Krontira AC, Cruceanu C, Dony L, Kyrousi C, Link MH, Rek N, et al. Human cortical neurogenesis is altered via glucocorticoid-mediated regulation of ZBTB16 expression. Neuron. 2024;112:1426–43.e11.

    Article  CAS  PubMed  Google Scholar 

  56. Prekovic S, Chalkiadakis T, Roest M, Roden D, Lutz C, Schuurman K, et al. Luminal breast cancer identity is determined by loss of glucocorticoid receptor activity. EMBO Mol Med. 2023;15:e17737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013;20:1147–55.

    Article  PubMed  Google Scholar 

  58. Agrawal Singh S, Lerdrup M, Gomes A-LR, van de Werken HJG, Vilstrup Johansen J, Andersson R, et al. PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells. eLife. 2019;8:e40364.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pereira RM, Martinez GJ, Engel I, Cruz-Guilloty F, Barboza BA, Tsagaratou A, et al. Jarid2 is induced by TCR signalling and controls iNKT cell maturation. Nat Commun. 2014;5:4540.

    Article  CAS  PubMed  Google Scholar 

  60. Dobenecker MW, Kim JK, Marcello J, Fang TC, Prinjha R, Bosselut R, et al. Coupling of T cell receptor specificity to natural killer T cell development by bivalent histone H3 methylation. J Exp Med. 2015;212:297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meng M, Liu H, Chen S, Zhao H, Gao X, Zhang J, et al. Methylation of H3K27 and H3K4 in key gene promoter regions of thymus in RA mice is involved in the abnormal development and differentiation of iNKT cells. Immunogenetics. 2019;71:489–99.

    Article  CAS  PubMed  Google Scholar 

  62. Yu W, Xie Z, Li J, Lin J, Su Z, Che Y, et al. Super enhancers targeting ZBTB16 in osteogenesis protect against osteoporosis. Bone Res. 2023;11:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mao AP, Ishizuka IE, Kasal DN, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vincent A, Omura N, Hong S-M, Jaffe A, Eshleman J, Goggins M. Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res. 2011;17:4341–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu S, Chen Y, Liu L, Yin X, Yang Y, Tang L. PLZF and PLZF-MAPK10 can predict the prognosis of postoperative patients with hepatocellular carcinoma. Int J Clin Exp Pathol. 2020;13:3158–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Q, Li X, Li Y, Chen S, Shen X, Dong X, et al. Expression of the PTEN/FOXO3a/PLZF signalling pathway in pancreatic cancer and its significance in tumourigenesis and progression. Invest N. Drugs. 2020;38:321–8.

    Article  Google Scholar 

  67. Wang K, Guo D, Yan T, Sun S, Wang Y, Zheng H, et al. ZBTB16 inhibits DNA replication and induces cell cycle arrest by targeting WDHD1 transcription in lung adenocarcinoma. Oncogene. 2024;43:1796–1810.

    Article  CAS  PubMed  Google Scholar 

  68. Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TimD, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity. 2015;42:443–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Alvarez-Garcia O, Fisch KM, Wineinger NE, Akagi R, Saito M, Sasho T, et al. Increased DNA methylation and reduced expression of transcription factors in human osteoarthritis cartilage. Arthritis Rheumatol. 2016;68:1876–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015;520:243–7.

    Article  CAS  PubMed  Google Scholar 

  71. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26:577–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guo Y, Li J, Fan S, Hu Q. Suppressive role of E3 ubiquitin ligase FBW7 in type I diabetes in non-obese diabetic mice through mediation of ubiquitination of EZH2. Cell Death Discov. 2021;7:361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang B, Li J, Wang Y, Liu X, Yang X, Liao Z, et al. Deubiquitinase USP7 stabilizes KDM5B and promotes tumor progression and cisplatin resistance in nasopharyngeal carcinoma through the ZBTB16/TOP2A axis. Cell Death Differ. 2024;31:309–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Doulatov S, Notta F, Rice KL, Howell L, Zelent A, Licht JD, et al. PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev. 2009;23:2076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hobbs RM, Seandel M, Falciatori I, Rafii S, Pandolfi PP. Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell. 2010;142:468–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu D, Holko M, Sadler AJ, Scott B, Higashiyama S, Berkofsky-Fessler W, et al. Promyelocytic leukemia zinc finger protein regulates interferon-mediated innate immunity. Immunity. 2009;30:802–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shen H, Zhan M, Zhang Y, Huang S, Xu S, Huang X, et al. PLZF inhibits proliferation and metastasis of gallbladder cancer by regulating IFIT2. Cell Death Dis. 2018;9:71.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Won JH, Park JS, Ju HH, Kim S, Suh-Kim H, Ghil SH. The alpha subunit of Go interacts with promyelocytic leukemia zinc finger protein and modulates its functions. Cell Signal. 2008;20:884–91.

    Article  CAS  PubMed  Google Scholar 

  79. Barna M, Merghoub T, Costoya JA, Ruggero D, Branford M, Bergia A, et al. Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell. 2002;3:499–510.

    Article  CAS  PubMed  Google Scholar 

  80. Dhordain P, Albagli O, Honore N, Guidez F, Lantoine D, Schmid M, et al. Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF. Oncogene. 2000;19:6240–50.

    Article  CAS  PubMed  Google Scholar 

  81. Legrand JMD, Chan A-L, La HM, Rossello FJ, Änkö M-L, Fuller-Pace FV, et al. DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun. 2019;10:2278.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mathew R, Seiler MP, Scanlon ST, Mao AP, Constantinides MG, Bertozzi-Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S, et al. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene. 1999;18:925–34.

    Article  CAS  PubMed  Google Scholar 

  84. Barna M, Hawe N, Niswander L, Pandolfi PP. Plzf regulates limb and axial skeletal patterning. Nat Genet. 2000;25:166–72.

    Article  CAS  PubMed  Google Scholar 

  85. Ivins S, Pemberton K, Guidez F, Howell L, Krumlauf R, Zelent A. Regulation of Hoxb2 by APL-associated PLZF protein. Oncogene. 2003;22:3685–97.

    Article  CAS  PubMed  Google Scholar 

  86. Singh SP, Zhang HH, Tsang H, Gardina PJ, Myers TG, Nagarajan V, et al. PLZF regulates CCR6 and is critical for the acquisition and maintenance of the Th17 phenotype in human cells. J Immunol. 2015;194:4350–61.

    Article  CAS  PubMed  Google Scholar 

  87. Mao AP, Constantinides MG, Mathew R, Zuo Z, Chen X, Weirauch MT, et al. Multiple layers of transcriptional regulation by PLZF in NKT-cell development. Proc Natl Acad Sci USA. 2016;113:7602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han H, Wang S, Meng J, Lyu G, Ding G, Hu Y, et al. Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2. Oncogene. 2020;39:6513–28.

    Article  CAS  PubMed  Google Scholar 

  89. Xiao GQ, Li F, Findeis-Hosey J, Hyrien O, Unger PD, Xiao L, et al. Down-regulation of cytoplasmic PLZF correlates with high tumor grade and tumor aggression in non-small cell lung carcinoma. Hum Pathol. 2015;46:1607–15.

    Article  CAS  PubMed  Google Scholar 

  90. Stopsack KH, Gerke T, Tyekucheva S, Mazzu YZ, Lee GM, Chakraborty G, et al. Low expression of the androgen-induced tumor suppressor gene PLZF and lethal prostate cancer. Cancer Epidemiol Biomark Prev. 2019;28:707–14.

    Article  CAS  Google Scholar 

  91. Noh KH, Jeong AJ, Lee H, Lee S-H, Yi E, Chang P-S, et al. Crosstalk between prostate cancer cells and tumor-associated fibroblasts enhances the malignancy by inhibiting the tumor suppressor PLZF. Cancers. 2020;12:1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matsuzawa K, Izawa S, Ohkura T, Ohkura H, Ishiguro K, Yoshida A, et al. Implication of intracellular localization of transcriptional repressor PLZF in thyroid neoplasms. BMC Endocr Disord. 2014;14:52.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang JB, Jin Y, Wu P, Liu Y, Zhao WJ, Chen JF, et al. Tumor suppressor PLZF regulated by lncRNA ANRIL suppresses proliferation and epithelial mesenchymal transformation of gastric cancer cells. Oncol Rep. 2019;41:1007–18.

    Article  CAS  PubMed  Google Scholar 

  94. Felicetti F, Bottero L, Felli N, Mattia G, Labbaye C, Alvino E, et al. Role of PLZF in melanoma progression. Oncogene. 2004;23:4567–76.

    Article  CAS  PubMed  Google Scholar 

  95. Poplineau M, Vernerey J, Platet N, N’Guyen L, Hérault L, Esposito M, et al. PLZF limits enhancer activity during hematopoietic progenitor aging. Nucleic Acids Res. 2019;47:4509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Labbaye C, Quaranta MT, Pagliuca A, Militi S, Licht JD, Testa U, et al. PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein. Oncogene. 2002;21:6669–79.

    Article  CAS  PubMed  Google Scholar 

  97. McConnell MJ, Chevallier N, Berkofsky-Fessler W, Giltnane JM, Malani RB, Staudt LM, et al. Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell Biol. 2003;23:9375–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schefe JH, Menk M, Reinemund J, Effertz K, Hobbs RM, Pandolfi PP, et al. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res. 2006;99:1355–66.

    Article  CAS  PubMed  Google Scholar 

  99. Quaranta MT, Spinello I, Testa U, Mariani G, Diverio D, Foà R, et al. PLZF-mediated control on VLA-4 expression in normal and leukemic myeloid cells. Oncogene. 2006;25:399–408.

    Article  CAS  PubMed  Google Scholar 

  100. Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP, et al. Repression of kit expression by Plzf in germ cells. Mol Cell Biol. 2007;27:6770–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shi J, Sun M, Vogt PK. Smooth muscle α-actin is a direct target of PLZF: effects on the cytoskeleton and on susceptibility to oncogenic transformation. Oncotarget. 2010;1:9–21.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang SM, Lee YC, Ko CY, Lai MD, Lin DY, Pao PC, et al. Increase of zinc finger protein 179 in response to CCAAT/enhancer binding protein delta conferring an antiapoptotic effect in astrocytes of Alzheimer’s disease. Mol Neurobiol. 2015;51:370–82.

    Article  CAS  PubMed  Google Scholar 

  103. Song W, Shi X, Xia Q, Yuan M, Liu J, Hao K, et al. PLZF suppresses differentiation of mouse spermatogonial progenitor cells via binding of differentiation associated genes. J Cell Physiol. 2020;235:3033–42.

    Article  CAS  PubMed  Google Scholar 

  104. Xu Y, Zhang H, Wu S, Liu J, Liu H, Wang D, et al. PLZF restricts intestinal ILC3 function in gut defense. Cell Mol Immunol. 2023;20:379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xiong B, Chen L, Huang Y, Lu G, Chen C, Nong J, et al. ZBTB16 eases lipopolysaccharide‑elicited inflammation, apoptosis and degradation of extracellular matrix in chondrocytes during osteoarthritis by suppressing GRK2 transcription. Exp Ther Med. 2023;25:276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wei ZX, Cai XX, Fei YD, Wang Q, Hu XL, Li C, et al. Zbtb16 increases susceptibility of atrial fibrillation in type 2 diabetic mice via Txnip-Trx2 signaling. Cell Mol Life Sci. 2024;81:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank the cBioPortal database for providing pan-cancer data. Figures 2, 3 are drawn by FigDraw.

Funding

This work is supported by National Natural Science Foundation of China (82102700) and Natural Science Foundation of Shandong Province (ZR2024MH064, ZR2023MH342).

Author information

Authors and Affiliations

Authors

Contributions

KW, DG: Conceptualization, Investigation, Visualization, Writing - original draft; JD: Methodology, Project administration, Supervision, Writing - review and editing; KT, SS: Data curation, Validation; HS: Funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiajun Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Guo, D., Sun, S. et al. Old versus new: upstream and downstream of promyelocytic leukemia zinc finger protein. Cancer Gene Ther 32, 750–761 (2025). https://doi.org/10.1038/s41417-025-00912-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00912-w

Search

Quick links