Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATOH8 confers the vulnerability of tumor cells to ferroptosis by repressing SCD expression

Abstract

Emerging evidence indicates that transcriptional regulation plays pivotal roles in modulating cellular vulnerability to ferroptosis. However, the intricate mechanisms governing these processes remain poorly understood. In this study, we identify ATOH8, a basic helix-loop-helix (bHLH) transcription factor, as a key player in ferroptosis regulation. ATOH8 is significantly upregulated in tumor cells following treatment with a ferroptosis inducer. Overexpression of ATOH8 increases the susceptibility of tumor cells to ferroptosis, while deletion of ATOH8 promotes ferroptosis evasion. Mechanistically, ATOH8 confers the sensitivity of tumor cells to ferroptosis by suppressing the transcription of stearoyl-CoA desaturase (SCD). Additionally, another bHLH family member, TCF3, is found to functions as a co-factor with ATOH8 by forming a TCF3-ATOH8 transcriptional repressive complex that suppresses SCD transcription. Furthermore, searching for upstream element reveals that EZH2 epigenetically suppresses ATOH8 expression by promoting DNA methylation in the ATOH8 promoter region and increasing the level of H3K27 me3. Importantly, pharmacological inhibition of EZH2 in a combined with a ferroptosis inducer markedly impedes tumor growth both in vitro and in vivo. Collectively, our study elucidates a molecular link between ferroptosis and epigenetic and transcriptional regulation, highlighting the potential of EZH2 and ATOH8 as therapeutic targets for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ATOH8 is upregulated during ferroptosis.
Fig. 2: ATOH8 enhances the sensitivity to ferroptosis in tumors.
Fig. 3: ATOH8 binds TCF3 to form a transcriptional complex.
Fig. 4: ATOH8 enhances susceptibility of tumor cells to ferroptosis by suppressing SCD expression.
Fig. 5: ATOH8 suppresses SCD expression requiring TCF3.
Fig. 6: EZH2 epigenetically suppresses ATOH8 expression.
Fig. 7: Inhibition of EZH2 synergizes with the treatment of a ferroptosis inducer (IKE) suppresses tumor growth in vivo.

Similar content being viewed by others

Data availability

The ChIP-seq and mRNA-seq data generated in this study have been deposited in the NCBI Gene Expression Omnibus (GEO) database under accession numbers GSE282996 (ChIP-seq) and GSE282997 (mRNA-seq). The lipidomic data are available within the Original Data File. All other data are available from the corresponding authors upon request.

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20:1181–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 2019;21:579–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, et al. Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer Cells from Ferroptotic Cell Death. Cancer Res. 2019;79:5355–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dai C, Chen X, Li J, Comish P, Kang R, Tang D. Transcription factors in ferroptotic cell death. Cancer Gene Ther. 2020;27:645–56.

    Article  PubMed  CAS  Google Scholar 

  7. Liu J, Song X, Kuang F, Zhang Q, Xie Y, Kang R, et al. NUPR1 is a critical repressor of ferroptosis. Nat Commun. 2021;12:647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(). Cell Death Differ. 2020;27:662–75.

    Article  PubMed  CAS  Google Scholar 

  9. Yang M, Luo H, Yi X, Wei X, Jiang DS. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases. MedComm (2020). 2023;4:e267.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X, et al. Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med. 2020;160:552–65.

    Article  PubMed  CAS  Google Scholar 

  11. Chen M, Jiang Y, Sun Y. KDM4A-mediated histone demethylation of SLC7A11 inhibits cell ferroptosis in osteosarcoma. Biochem Biophys Res Commun. 2021;550:77–83.

    Article  PubMed  CAS  Google Scholar 

  12. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Muller C, Zandkarimi F, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent Sci. 2020;6:41–53.

    Article  PubMed  CAS  Google Scholar 

  13. Divvela SSK, Saberi D, Brand-Saberi B. Atoh8 in Development and Disease. Biology (Basel) 2022;11:136.

  14. Lee J, Roh JL. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett. 2023;559:216119.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang W, Dai J, Hou G, Liu H, Zheng S, Wang X, et al. SMURF2 predisposes cancer cell toward ferroptosis in GPX4-independent manners by promoting GSTP1 degradation. Mol Cell. 2023;83:4352–69.e4358.

    Article  PubMed  CAS  Google Scholar 

  16. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–84.

    Article  PubMed  CAS  Google Scholar 

  17. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–8.

    Article  PubMed  CAS  Google Scholar 

  18. Torres-Machorro AL. Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci. 2021;22:12855.

  19. Sen U, Coleman C, Sen T. Stearoyl coenzyme A desaturase-1: multitasker in cancer, metabolism, and ferroptosis. Trends Cancer. 2023;9:480–9.

    Article  PubMed  CAS  Google Scholar 

  20. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86:839–48.

    Article  PubMed  CAS  Google Scholar 

  21. Kautz L, Meynard D, Monnier A, Darnaud V, Bouvet R, Wang RH, et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood. 2008;112:1503–9.

    Article  PubMed  CAS  Google Scholar 

  22. Patel N, Varghese J, Masaratana P, Latunde-Dada GO, Jacob M, Simpson RJ, et al. The transcription factor ATOH8 is regulated by erythropoietic activity and regulates HAMP transcription and cellular pSMAD1,5,8 levels. Br J Haematol. 2014;164:586–96.

    Article  PubMed  CAS  Google Scholar 

  23. Liu X, Li X, Wang S, Liu Q, Feng X, Wang W, et al. ATOH8 binds SMAD3 to induce cellular senescence and prevent Ras-driven malignant transformation. Proc Natl Acad Sci USA. 2023;120:e2208927120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chen C, Wang Z, Ding Y, Wang L, Wang S, Wang H, et al. DNA Methylation: From Cancer Biology to Clinical Perspectives. Front Biosci. 2022;27:326.

  25. Yu Y, MohamedAl-Sharani H, Zhang B. EZH2-mediated SLC7A11 upregulation via miR-125b-5p represses ferroptosis of TSCC. Oral Dis. 2023;29:880–91.

    Article  PubMed  Google Scholar 

  26. Lai Y, Han X, Xie B, Xu Y, Yang Z, Wang D, et al. EZH2 suppresses ferroptosis in hepatocellular carcinoma and reduces sorafenib sensitivity through epigenetic regulation of TFR2. Cancer Sci. 2024;115:2220–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang Y, Tang B, Song J, Yu S, Li Y, Su H, et al. Lnc-PDZD7 contributes to stemness properties and chemosensitivity in hepatocellular carcinoma through EZH2-mediated ATOH8 transcriptional repression. J Exp Clin Cancer Res. 2019;38:92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12:31–46.

    Article  PubMed  CAS  Google Scholar 

  29. Liang JJ, Peng H, Wang JJ, Liu XH, Ma L, Ni YR, et al. Relationship between the structure and function of the transcriptional regulator E2A. J Biol Res (Thessalon). 2021;28:15.

    Article  PubMed  CAS  Google Scholar 

  30. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–4.

    Article  PubMed  CAS  Google Scholar 

  31. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13:104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Liu F, Song DY, Huang J, Yang HQ, You D, Ni JD. Long non-coding RNA CIR inhibits chondrogenic differentiation of mesenchymal stem cells by epigenetically suppressing ATOH8 via methyltransferase EZH2. Mol Med. 2021;27:12.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xiao H, Du X, Tao Z, Jing N, Bao S, Gao WQ, et al. Taurine Inhibits Ferroptosis Mediated by the Crosstalk between Tumor Cells and Tumor-Associated Macrophages in Prostate Cancer. Adv Sci (Weinh). 2024;11:e2303894.

    Article  PubMed  Google Scholar 

  34. Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18:1427–31.

    Article  PubMed  CAS  Google Scholar 

  35. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2023YFC1404101 and 2022YFA1302704 to W.Q.G.), the National Natural Science Foundation of China (82072843 to Y.X.F., W2431055 and U23A20441 to W.Q.G. and 82372698 to B.D.), the Science and Technology Commission of Shanghai Municipality (21JC1404100 to W.Q.G. and 19411967400 to B.D.), the Peak Disciplines (Type IV) of Institutions of Higher Learning in Shanghai to W.Q.G., 111 Project (B21024) and KC Wong foundation to W.Q.G., Summit Plateau Program, Research Physician Program, Shanghai Jiao Tong University School of Medicine to B.D., Shanghai Municipal Health Commission (2019LJ11, 2020CXJQ03) to B.D.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were conceived and designed by Y.F., W.Q.G. and B.D. Experiments were performed by H.X., X.D., H.H. and W.G. Data were analyzed by H.X., H.H., Z.T., S.B. and Z.W. The paper was written by H.X., Y.F. and W.Q.G. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei-Qiang Gao, Baijun Dong or Yu-Xiang Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Du, X., Hou, H. et al. ATOH8 confers the vulnerability of tumor cells to ferroptosis by repressing SCD expression. Cell Death Differ 32, 1397–1412 (2025). https://doi.org/10.1038/s41418-025-01482-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01482-y

Search

Quick links