Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Data availability
The raw data of WGS, RNA-seq, and Hi-C are available with accession number CRA004756.
References
Gimenez, M. D. et al. J. Hered. 108, 25–35 (2017).
Garagna, S., Page, J., Fernandez-Donoso, R., Zuccotti, M. & Searle, J. B. Chromosoma 123, 529–544 (2014).
Garagna, S., Zuccotti, M., Capanna, E. & Redi, C. A. Cytogenet. Genome Res. 96, 125–129 (2002).
Shao, Y. et al. Nature 560, 331–335 (2018).
Luo, J., Sun, X., Cormack, B. P. & Boeke, J. D. Nature 560, 392–396 (2018).
Kalitsis, P., Griffiths, B. & Choo, K. H. Proc. Natl Acad. Sci. USA 103, 8786–8791 (2006).
Yang, H. et al. Cell 149, 605–617 (2012).
Zhong, C. et al. Cell Stem Cell 17, 221–232 (2015).
Hayashi, T. et al. Genomics 17, 490–492 (1993).
Warburton, P. E. et al. Curr. Biol. 7, 901–904 (1997).
Earnshaw, W. C., Ratrie, H. 3rd & Stetten, G. Chromosoma 98, 1–12 (1989).
Rao, S. S. et al. Cell 159, 1665–1680 (2014).
Quinodoz, S. A. et al. Cell 174, 744–757.e24 (2018).
Chmatal, L. et al. Curr. Biol. 24, 2295–2300 (2014).
Misteli, T. Cell 183, 28–45 (2020).
Acknowledgements
We thank N. Li and D. Li for critical discussions. We thank L. Hui for providing the immortalized plasmid. We thank Genome Tagging Project (GTP) center for providing CENP-A-HAtag cell line. This study was supported by the National Key R&D Program of China and the National Natural Science Foundation of China (2019YFA0109900, 2020YFA0509000, 31821004, 32030029, and 31730062), and partly supported by China Postdoctoral Science Foundation (2021TQ0329).
Author information
Authors and Affiliations
Contributions
J.L., X.M.Z., M.Y., and P.G. conceived of the project. X.M.Z., Z.Y., H.X., W.T., X.C., and Q.W. performed the experiments. M.Y., X.L. and X.M.Z. analyzed the high-throughput data. G.P. and X.L. interpreted the data with the help from all other authors. J.L., X.M.Z., and M.Y. wrote the manuscript. J.L. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Zhang, X.M., Yan, M., Yang, Z. et al. Creation of artificial karyotypes in mice reveals robustness of genome organization. Cell Res 32, 1026–1029 (2022). https://doi.org/10.1038/s41422-022-00722-x
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41422-022-00722-x
This article is cited by
-
Artificial chromosome reorganization reveals high plasticity of the budding and fission yeast genomes
Genome Biology (2025)
-
Visualization of chromosomal reorganization induced by heterologous fusions in the mammalian nucleus
Nature Communications (2025)
-
Chromosome territory reorganization through artificial chromosome fusion is compatible with cell fate determination and mouse development
Cell Discovery (2023)
-
Modeling specific aneuploidies: from karyotype manipulations to biological insights
Chromosome Research (2023)