Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA remnants in red blood cells enable early detection of cancer

Abstract

Cytoplasmic DNA emerges as a consequence of genomic instability. However, its potential role in disease diagnosis has yet to be fully explored. Here we analyzed DNA remnants in mature red blood cells (rbcDNA) from both healthy individuals and cancer patients. Our study unveiled distinct genomic profiles in rbcDNA from cancer patients with early-stage solid tumors compared to those of healthy donors. Significant changes in read counts at specific genomic regions within rbcDNA were identified in patients, which were termed tumor-associated rbcDNA features. These features demonstrated potential for highly accurate early-stage cancer detection, proposing a novel approach for cancer detection. Moreover, tumor-associated rbcDNA features were observed in tumor mouse models, with some features being conserved between mice and humans. Chronic, but not transient, up-regulation of interleukin-18 is essential for the development of these features by promoting DNA damage in bone marrow hematopoietic cells through the up-regulation of NR4A1. These results underscore the remote regulation of chromosomal stability in hematopoietic cells by solid tumors and propose tumor-associated rbcDNA features as a promising strategy for early cancer detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of rbcDNA isolated from human RBCs.
Fig. 2: Distinct genomic profiles of rbcDNA from cancer patients.
Fig. 3: Tumor-associated rbcDNA signature enables early cancer detection.
Fig. 4: Preference of tumor-associated rbcDNA signature in cancer detection is independent of clinical characteristics.
Fig. 5: Induction of IL-18 during tumor progression is essential for the formation of tumor-associated rbcDNA signature.
Fig. 6: IL-18 signaling promotes DNA damage in BM hematopoietic cells from tumor-bearing mice.
Fig. 7: NR4A1 is essential for tumor-associated rbcDNA signature formation.

Similar content being viewed by others

Data availability

This study did not generate new unique materials. The data described in this manuscript have been deposited in the Genome Sequence Archive (GSA) in the national genomics data center. The assigned accession numbers of the submission are HRA006186 for the human datasets and CRA013839 for the mouse datasets. The supplemental materials can be found in Supplementary information, Tables S1–S18. All data are available in the main text or the supplementary materials.

All analyses were performed using previously published or developed tools, as indicated in Materials and Methods. The pipeline and software versions used for analysis and visualization are available on GitHub at https://github.com/GaoXlab/MNDNA_scripts_forSun.

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed  Google Scholar 

  2. Crosby, D. et al. Early detection of cancer. Science 375, eaay9040 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Ma, L. et al. Liquid biopsy in cancer: current status, challenges and future prospects. Signal Transduct. Target. Ther. 9, 336 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mattox, A. K. et al. The origin of highly elevated cell-free DNA in healthy individuals and patients with pancreatic, colorectal, lung, or ovarian cancer. Cancer Discov. 13, 2166–2179 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martin-Alonso, C. et al. Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science 383, eadf2341 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller, K. N. et al. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184, 5506–5526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He, X. et al. Cytoplasmic DNAs: Sources, sensing, and roles in the development of lung inflammatory diseases and cancer. Front. Immunol. 14, 1117760 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jakupciak, J. P. et al. Performance of mitochondrial DNA mutations detecting early stage cancer. BMC Cancer 8, 285 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haupts, A. et al. Comparative analysis of nuclear and mitochondrial DNA from tissue and liquid biopsies of colorectal cancer patients. Sci. Rep. 11, 16745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Pol, Y. et al. The landscape of cell-free mitochondrial DNA in liquid biopsy for cancer detection. Genome Biol. 24, 229 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Bona, M. & Bakhoum, S. F. Micronuclei and cancer. Cancer Discov. 14, 214–226 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bolognesi, C. et al. Clinical application of micronucleus test in exfoliated buccal cells: A systematic review and metanalysis. Mutat. Res. Rev. Mutat. Res. 766, 20–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Murgia, E., Ballardin, M., Bonassi, S., Rossi, A. M. & Barale, R. Validation of micronuclei frequency in peripheral blood lymphocytes as early cancer risk biomarker in a nested case–control study. Mutat. Res. 639, 27–34 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, C.-Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Utani, K., Kawamoto, J. K. & Shimizu, N. Micronuclei bearing acentric extrachromosomal chromatin are transcriptionally competent and may perturb the cancer cell phenotype. Mol. Cancer Res. 5, 695–704 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anastasiadi, A. T. et al. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 15, 315–330 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Howell, W. H. The life-history of the formed elements of the blood, especially the red blood corpuscles. J. Morphol. 4, 57–116 (1890).

    Article  Google Scholar 

  20. Hu, M.-M. & Shu, H.-B. Innate immune response to cytoplasmic DNA: Mechanisms and diseases. Annu. Rev. Immunol. 38, 79–98 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y. et al. Cytoplasmic DNA sensing by KU complex in aged CD4+ T cell potentiates T cell activation and aging-related autoimmune inflammation. Immunity 54, 632–647.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Balmus, G. et al. A high-throughput in vivo micronucleus assay for genome instability screening in mice. Nat. Protoc. 10, 205–215 (2015).

    Article  PubMed  Google Scholar 

  23. Suzuki, Y. et al. The micronucleus test and erythropoiesis: Effects of cyclic adenosine monophosphate (cAMP) on micronucleus formation. Mutat. Res. 655, 47–51 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi, M. The micronucleus test-most widely used in vivo genotoxicity test. Genes Environ. 38, 18 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pruitt, S. C., Qin, M., Wang, J., Kunnev, D. & Freeland, A. A signature of genomic instability resulting from deficient replication licensing. PLoS Genet. 13, e1006547 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Catalina, P. et al. Sequencing micronuclei reveals the landscape of chromosomal instability. bioRxiv https://doi.org/10.1101/2021.1110.1128.466311 (2021).

  27. Elia, H. et al. Human hematopoietic stem/progenitor cells display reactive oxygen species-dependent long-term hematopoietic defects after exposure to low doses of ionizing radiations. Haematologica 105, 2044–2055 (2020).

    Article  Google Scholar 

  28. Plackoska, V., Shaban, D. & Nijnik, A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front. Immunol. 13, 1041010 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, N., Chen, H. & Wang, J. DNA damage and repair in the hematopoietic system. Acta Biochim. Biophys. Sin. 54, 847–857 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beerman, I., Seita, J., Inlay, M. A., Weissman, I. L. & Rossi, D. J. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15, 37–50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spisz, T. S. et al. Automated sizing of DNA fragments in atomic force microscope images. Med. Biol. Eng. Comput. 36, 667–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Katsman, E. et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol. 23, 158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, Z.-W. et al. Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB Life 63, 560–565 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Wei, L. et al. Circulating tumor DNA measurement provides reliable mutation detection in mice with human lung cancer xenografts. Lab. Invest. 98, 935–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Mammel, A. E., Huang, H. Z., Gunn, A. L., Choo, E. & Hatch, E. M. Chromosome length and gene density contribute to micronuclear membrane stability. Life Sci. Alliance 5, e202101210 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mauri, G. et al. Liquid biopsies to monitor and direct cancer treatment in colorectal cancer. Br. J. Cancer 127, 394–407 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794 https://doi.org/10.1145/2939672.2939785 (Association for Computing Machinery, 2016).

  39. Kuipers, E. J. et al. Colorectal cancer. Nat. Rev. Dis. Prim. 1, 15065 (2015).

    Article  PubMed  Google Scholar 

  40. Nigam, M. et al. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed. Pharmacother. 164, 115015 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Nicholson, B. D. et al. Multi-cancer early detection test in symptomatic patients referred for cancer investigation in England and Wales (SYMPLIFY): a large-scale, observational cohort study. Lancet Oncol. 24, 733–743 (2023).

    Article  PubMed  Google Scholar 

  42. Cristiano, S. et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570, 385–389 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Kettunen, H. L., Kettunen, A. S. L. & Rautonen, N. E. Intestinal immune responses in wild-type and ApcMin/+ mouse, a model for colon cancer. Cancer Res. 63, 5136–5142 (2003).

    CAS  PubMed  Google Scholar 

  45. Vallelian, F. et al. Heme-stress activated NRF2 skews fate trajectories of bone marrow cells from dendritic cells towards red pulp-like macrophages in hemolytic anemia. Cell Death Differ. 29, 1450–1465 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Da Costa, L., Leblanc, T. & Mohandas, N. Diamond-Blackfan anemia. Blood 136, 1262–1273 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Morgado-Palacin, L. et al. Partial loss of Rpl11 in adult mice recapitulates Diamond-Blackfan anemia and promotes lymphomagenesis. Cell Rep. 13, 712–722 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Doty, R. T. et al. Single-cell analysis of erythropoiesis in Rpl11 haploinsufficient mice reveals insight into the pathogenesis of Diamond-Blackfan anemia. Exp. Hematol. 97, 66–78.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hao, X. et al. Osteoprogenitor-GMP crosstalk underpins solid tumor-induced systemic immunosuppression and persists after tumor removal. Cell Stem Cell 30, 648–664.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gerber-Ferder, Y. et al. Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche. Nat. Cell Biol. 25, 1736–1745 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tarallo, V. et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149, 847–859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ojala, J. O. & Sutinen, E. M. The role of interleukin-18, oxidative stress and metabolic syndrome in Alzheimer’s disease. J. Clin. Med. 6, 55 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ihim, S. A. et al. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front. Immunol. 13, 919973 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yasuda, K., Nakanishi, K. & Tsutsui, H. Interleukin-18 in health and disease. Int. J. Mol. Sci. 20, 649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 15.25.11–15.25.14 (2014).

    Article  Google Scholar 

  57. Banerjee, S. & Bond, J. S. Prointerleukin-18 is activated by Meprin β in vitro and in vivo in intestinal inflammation. J. Biol. Chem. 283, 31371–31377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ji, P., Murata-Hori, M. & Lodish, H. F. Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol. 21, 409–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Klapp, V. et al. The DNA damage response and inflammation in cancer. Cancer Discov. 13, 1521–1545 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Howard, J. E., Smith, J. N. P., Fredman, G. & MacNamara, K. C. IL-18R-mediated HSC quiescence and MLKL-dependent cell death limit hematopoiesis during infection-induced shock. Stem Cell Rep. 16, 2887–2899 (2021).

    Article  CAS  Google Scholar 

  61. Shao, L. et al. Hematopoietic stem cell senescence and cancer therapy-induced long-term bone marrow injury. Transl. Cancer Res. 2, 397–411 (2013).

    CAS  PubMed  Google Scholar 

  62. Kotsantis, P. et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat. Commun. 7, 13087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, N. & Jinks-Robertson, S. Transcription as a source of genome instability. Nat. Rev. Genet. 13, 204–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Safe, S. & Karki, K. The Paradoxical roles of orphan nuclear receptor 4A (NR4A) in cancer. Mol. Cancer Res. 19, 180–191 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Wenzl, K., Troppan, K., Neumeister, P. & Deutsch, J. A. A. The nuclear orphan receptor NR4A1 and NR4A3 as tumor suppressors in hematologic neoplasms. Curr. Drug Targets 16, 38–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. de Léséleuc, L. & Denis, F. Nur77 forms novel nuclear structures upon DNA damage that cause transcriptional arrest. Exp. Cell Res. 312, 1507–1513 (2006).

    Article  PubMed  Google Scholar 

  67. Zhao, B. -x. et al. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation. Mol. Endocrinol. 25, 1337–1350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo, H. et al. NR4A1 regulates expression of immediate early genes, suppressing replication stress in cancer. Mol. Cell 81, 4041–4058.e15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marinello, J. et al. Topoisomerase I poison-triggered immune gene activation is markedly reduced in human small-cell lung cancers by impairment of the cGAS/STING pathway. Br. J. Cancer 127, 1214–1225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Magis, A. et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl. Acad. Sci. USA 116, 816–825 (2019).

    Article  PubMed  Google Scholar 

  71. Zou, Z., Ohta, T. & Oki, S. ChIP-Atlas 3.0: a data-mining suite to explore chromosome architecture together with large-scale regulome data. Nucleic Acids Res. 52, W45–W53 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liu, X. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525–529 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, S.-O. et al. Diindolylmethane analogs bind NR4A1 and are NR4A1 antagonists in colon cancer cells. Mol. Endocrinol. 28, 1729–1739 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shaukat, A. & Levin, T. R. Current and future colorectal cancer screening strategies. Nat. Rev. Gastroenterol. Hepatol. 19, 521–531 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chung Daniel, C. et al. A Cell-free DNA blood-based test for colorectal cancer screening. N. Engl. J. Med. 390, 973–983 (2024).

    Article  CAS  PubMed  Google Scholar 

  76. Klein, E. A. et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 32, 1167–1177 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Kerachian, M. A., Azghandi, M., Mozaffari-Jovin, S. & Thierry, A. R. Guidelines for pre-analytical conditions for assessing the methylation of circulating cell-free DNA. Clin. Epigenetics 13, 193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16, 717–727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Magod, P. et al. Exploring the longitudinal glioma microenvironment landscape uncovers reprogrammed pro-tumorigenic neutrophils in the bone marrow. Cell Rep. 36, 109480 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Noetzli, L. J., French, S. L. & Machlus, K. R. New insights into the differentiation of megakaryocytes from hematopoietic progenitors. Arterioscler. Thromb. Vasc. Biol. 39, 1288–1300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kar, S. P. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 54, 1155–1166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Soto, M., García-Santisteban, I., Krenning, L., Medema, R. H. & Raaijmakers, J. A. Chromosomes trapped in micronuclei are liable to segregation errors. J. Cell Sci. 131, jcs214742 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Utani, K. -i., Kohno, Y., Okamoto, A. & Shimizu, N. Emergence of micronuclei and their effects on the fate of cells under replication stress. PLoS One 5, e10089 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wu, S. et al. BRAF inhibitors enhance erythropoiesis and treat anemia through paradoxical activation of MAPK signaling. Signal Transduct. Target. Ther. 9, 338 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 314–324 https://doi.org/10.1109/IPDPS.2019.00041 (2019).

  88. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

  89. Scheinin, I. et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 24, 2022–2032 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rex, D. A. B. et al. A comprehensive pathway map of IL-18-mediated signalling. J. Cell Commun. Signal. 14, 173 (2020).

    Article  Google Scholar 

  95. Shen, W.-K. et al. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 51, D39–D45 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Jiang, Y. Z. et al. GATA binding protein 2 mediated ankyrin repeat domain containing 26 high expression in myeloid-derived cell lines. World J. Stem Cells 16, 538–550 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the technical support from the Biomedical Research Core Facilities, Westlake High-Performance Computing Center, and Laboratory Animal Resources Center of Westlake University. We thank Dr. Jian Yang (Westlake University) for advice on data analysis, Dr. Hui Lin (Zhejiang University), Xiaoxiao Fan (Zhejiang University) and Xiaojie Huang (Zhejiang University) for advice on blood sample collection. Schematic figures were generated with BioRender (https://app.biorender.com/). This project was supported in part by grants from the National Natural Science Foundation of China (81973993), Zhejiang Provincial Natural Science Foundation of China (LR20C070001), Hangzhou Science and Technology Major Project (2018HZKJSA10095), and Key Research and Development Program of Zhejiang Province (2024C03170).

Author information

Authors and Affiliations

Authors

Contributions

H.S. and X.Y. contributed to methodology, investigation, visualization, project administration, original draft preparation, and manuscript review and editing. Y.J., X.K., Y.H., H.L., Y.C., and Y.X. participated in the investigation, including clinical sample collection and analysis. Y.L. and J.G. contributed to methodology. P.W., J.L., and K.D. provided supervision. X.G. conceptualized the study, contributed to methodology, investigation and visualization, acquired funding, administered the project, supervised the research, and contributed to original draft preparation, review, and editing. All authors discussed the results and provided comments on the manuscript.

Corresponding author

Correspondence to Xiaofei Gao.

Ethics declarations

Competing interests

The authors declare the following financial or non-financial competing interest: X.G. is a shareholder of Timing Biotech Co., Ltd. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, Fig. S1

Supplementary information, Fig. S2

Supplementary information, Fig. S3

Supplementary information, Fig. S4

Supplementary information, Fig. S5

Supplementary information, Fig. S6

Supplementary information, Fig. S7

Supplementary information, Fig. S8

Supplementary information, Fig. S9

Supplementary information, Fig. S10

Supplementary information, Fig. S11

Supplementary information, Fig. S12

Supplementary information, Fig. S13

Supplementary information, Fig. S14

Supplementary information, Fig. S15

Supplementary information, Fig. S16

Supplementary information, Fig. S17

Supplementary information, Fig. S18

Supplementary information, Table S1

Supplementary information, Table S2

Supplementary information, Table S3

Supplementary information, Table S4

Supplementary information, Table S5

Supplementary information, Table S6

Supplementary information, Table S7

Supplementary information, Table S8

Supplementary information, Table S9

Supplementary information, Table S10

Supplementary information, Table S11

Supplementary information, Table S12

Supplementary information, Table S13

Supplementary information, Table S14

Supplementary information, Table S15

Supplementary information, Table S16

Supplementary information, Table S17

Supplementary information, Table S18

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Yao, X., Jiao, Y. et al. DNA remnants in red blood cells enable early detection of cancer. Cell Res 35, 568–587 (2025). https://doi.org/10.1038/s41422-025-01122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41422-025-01122-7

Search

Quick links