Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

An immunopathogenic perspective of interleukin-1 signaling

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Mizel, S. B. & Farrar, J. J. Revised nomenclature for antigen-nonspecific T-cell proliferation and helper factors. Cell. Immunol. 48, 433–436 (1979).

    Article  CAS  Google Scholar 

  2. Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).

    Article  CAS  Google Scholar 

  3. Ridker, P. M. et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 39, 3499–3507 (2018).

    Article  CAS  Google Scholar 

  4. Chen, C.-J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13, 851–856 (2007).

    Article  CAS  Google Scholar 

  5. Zhang, C. et al. Macrophage-derived IL-1alpha promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol. Immunol. 15, 973–982 (2018).

    Article  CAS  Google Scholar 

  6. Freigang, S. et al. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1alpha and sterile vascular inflammation in atherosclerosis. Nat. Immunol. 14, 1045–1053 (2013).

    Article  CAS  Google Scholar 

  7. Lukens, J. R. et al. RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. Nature 498, 224–227 (2013).

    Article  CAS  Google Scholar 

  8. Bersudsky, M. et al. Non-redundant properties of IL-1α and IL-1β during acute colon inflammation in mice. Gut 63, 598–609 (2014).

  9. Benjamin, J. T. et al. Cutting Edge: IL-1α and not IL-1β drives IL-1R1-dependent neonatal murine sepsis lethality. J. Immunol. 201, 2873–2878 (2018).

    Article  CAS  Google Scholar 

  10. Caffrey, A. K. et al. IL-1alpha signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog. 11, e1004625 (2015).

    Article  Google Scholar 

  11. Barry, K. C., Fontana, M. F., Portman, J. L., Dugan, A. S. & Vance, R. E. IL-1α signaling initiates the inflammatory response to virulent Legionella pneumophila in vivo. J. Immunol. 190, 6329–6339 (2013).

    Article  CAS  Google Scholar 

  12. Malik, A. & Kanneganti, T. D. Function and regulation of IL-1alpha in inflammatory diseases and cancer. Immunol. Rev. 281, 124–137 (2018).

    Article  CAS  Google Scholar 

  13. Broz, P., Pelegrin, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

  14. Groß, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    Article  Google Scholar 

  15. Gehrke, N. et al. Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation. J. Hepatol. 68, 986–995 (2018).

    Article  CAS  Google Scholar 

  16. Liu, X. et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. Immunity 50, 317–333 e316 (2019).

    Article  CAS  Google Scholar 

  17. Visan, I. Mapping IL-1 in the brain. Nat. Immunol. 20, 245 (2019).

    PubMed  Google Scholar 

  18. Jain, A., Song, R., Wakeland, E. K. & Pasare, C. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. Nat. Commun. 9, 3185 (2018).

    Article  Google Scholar 

  19. Stienne, C. et al. Foxo3 transcription factor drives pathogenic T helper 1 differentiation by inducing the expression of eomes. Immunity 45, 774–787 (2016).

    Article  CAS  Google Scholar 

  20. Huang, H. et al. High levels of circulating GM-CSF+ CD4+ T cells are predictive of poor outcomes in sepsis patients: a prospective cohort study. Cell. Mol. Immunol. 16, 602–610 (2019).

    Article  CAS  Google Scholar 

  21. Zhou, Y. et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Nat. Sci. Rev. https://doi.org/10.1093/nsr/nwaa041 (2020).

  22. Komuczki, J. et al. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. Immunity 50, 1289–1304. e1286 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhang or Hong Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Twelkmeyer, T., Wang, SY. et al. An immunopathogenic perspective of interleukin-1 signaling. Cell Mol Immunol 17, 892–893 (2020). https://doi.org/10.1038/s41423-020-0475-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-020-0475-y

This article is cited by

Search

Quick links