Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Rapid Communication
  • Published:

Surface orientation of amphiphilic block copolymers via thermal annealing

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Hasegawa H, Hashimoto T. Morphology of block polymers near a free surface. Macromolecules. 1985;18:589–90.

    Article  CAS  Google Scholar 

  2. Jones RAL, Kramer EJ, Rafailovich MH, Sokolov J, Schwarz SA. Surface enrichment in an isotopic polymer blend. Phys Rev Lett. 1989;62:280–3.

    Article  CAS  PubMed  Google Scholar 

  3. Russell TP, Coulon G, Deline VR, Miller DC. Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers. Macromolecules. 1989;22:4600–6.

    Article  CAS  Google Scholar 

  4. Sikka M, Singh N, Karim A, Bates FS, Satija SK, Majkrzak CF. Entropy-driven surface segregation in block copolymer melts. Phys Rev Lett. 1993;70:307–10.

    Article  CAS  PubMed  Google Scholar 

  5. Goseki R, Miyao S, Uchida S, Yokoyama H, Ito K, Ishizone T. Surface characterization of amphiphilic block copolymers possessing polyisoprene and poly[tri(ethylene glycol) methacrylate] segments and the effect of side chain ω-function on surface energy. Polymer. 2020;190:122257.

    Article  Google Scholar 

  6. Mori H, Hirao A, Nakahama S, Senshu K. Synthesis and surface characterization of hydrophilic-hydrophobic block copolymers containing poly(2,3-dihydroxypropyl methacrylate). Macromolecules. 1994;27:4093–100.

    Article  CAS  Google Scholar 

  7. Chen W-L, Shull KR. Hydrophilic surface coatings from acrylic block copolymers. Macromolecules. 1999;32:6298–306.

    Article  CAS  Google Scholar 

  8. Ishizone T, Han S, Hagiwara M, Yokoyama H. Synthesis and surface characterization of well-defined amphiphilic block copolymers containing poly[oligo(ethylene glycol) methacrylate] segments. Macromolecules. 2006;39:962–70.

    Article  CAS  Google Scholar 

  9. Zhang C, Oda Y, Kawaguchi D, Kanaoka S, Aoshima S, Tanaka K. Dynamic-driven surface segregation of a hydrophilic component in diblock copolymer films. Chem Lett. 2015;44:166–8.

    Article  Google Scholar 

  10. Walton DG, Kellogg GJ, Mayes AM, Lambooy P, Russell TP. A free energy model for confined diblock copolymers. Macromolecules. 1994;27:6225–8.

    Article  CAS  Google Scholar 

  11. Wang HS, Kim KH, Bang J. Thermal approaches to perpendicular block copolymer microdomains in thin films: a review and appraisal. Macromol Rapid Commun. 2019;40:1800728.

    Article  Google Scholar 

  12. Khanna V, Cochran EW, Hexemer A, Stein GE, Fredrickson GH, Kramer EJ, et al. Effect of chain architecture and surface energies on the ordering behavior of lamellar and cylinder forming block copolymers. Macromolecules. 2006;39:9346–56.

    Article  CAS  Google Scholar 

  13. Lo T-Y, Dehghan A, Georgopanos P, Avgeropoulos A, Shi A-C, Ho R-M. Orienting block copolymer thin films via entropy. Macromolecules. 2016;49:624–33.

    Article  CAS  Google Scholar 

  14. Nakatani R, Takano H, Chandra A, Yoshimura Y, Wang L, Suzuki Y, et al. Perpendicular orientation control without interfacial treatment of RAFT-synthesized high-χ block copolymer thin films with sub-10 nm features prepared via thermal annealing. ACS Appl Mater Interfaces. 2017;9:31266–78.

    Article  CAS  PubMed  Google Scholar 

  15. Park SY, Choi C, Lee KS, Kim E, Ahn S, Lee J, et al. Microdomain orientation of star-shaped block copolymer thin film depending on molecular weight. Macromolecules. 2020;53:3611–8.

    Article  CAS  Google Scholar 

  16. Xia J, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization using multidentate amine ligands. Macromolecules. 1997;30:7697–700.

    Article  CAS  Google Scholar 

  17. Jones RAL, Richards RW. Polymers at surfaces and interfaces. United States of America: Cambridge University Press; 1999.

  18. Berry JD, Neeson MJ, Dagastine RR, Chan DYC, Tabor RF. Measurement of surface and interfacial tension using pendant drop tensiometry. J Colloid Interface Sci. 2015;454:226–37.

    Article  CAS  PubMed  Google Scholar 

  19. Wu S. Surface and interfacial tensions of polymers, oligomers, plasticizers, and organic pigments. In: Brandrup J, Immergut EH, Grulke EA, editors. Polymer handbook. 4th ed, vol. 7. United States of America: Wiley; 2003.

Download references

Acknowledgements

This research was partly supported by the JSJP KAKENHI Grant-in-Aid for Scientific Research (C), Grant Number JP24K08541, Japan, and the Sumitomo Foundation, Grant for Basic Science Research Project, Japan (YO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukari Oda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narumi, H., Oda, Y. Surface orientation of amphiphilic block copolymers via thermal annealing. Polym J 57, 335–339 (2025). https://doi.org/10.1038/s41428-024-00999-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-024-00999-2

This article is cited by

Search

Quick links