Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hygrothermal degradation mechanism of amine-cured epoxy resin

Abstract

A better understanding of the degradation mechanism of epoxy resins is crucial for the design and fabrication of materials with long-term durability. However, the understanding of this process has remained limited because the contributions of both heat and water must be considered simultaneously. In this study, we investigated the degradation mechanism of an amine-cured epoxy resin under hygrothermal conditions. Although the glass transition temperature (Tg) decreased with increasing hygrothermal aging time, this decrease was independent of the amount of sorbed water, indicating that plasticization was not the dominant factor. Instead, the reduction in the Tg was attributed to a decrease in the cross-linking density arising from C−O bond scission. Importantly, this scission was not based on acid-catalyzed cleavage but on radical-mediated cleavage. This process was induced by thermal decomposition followed by hydrogen donation from sorbed water. The insights obtained here provide molecular-level guidelines for designing epoxy resins with increased durability in hygrothermal environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. St John NA, George GA. Diglycidyl amine epoxy-resin networks—kinetics and mechanisms of cure. Prog Polym Sci. 1994;19:755–95.

    Google Scholar 

  2. Jin FL, Li X, Park SJ. Synthesis and application of epoxy resins: a review. J Ind Eng Chem. 2015;29:1–11.

    CAS  Google Scholar 

  3. Oliveux G, Dandy LO, Leeke GA. Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties. Prog Mater Sci. 2015;72:61–99.

    CAS  Google Scholar 

  4. Hsissou R, Seghiri R, Benzekri Z, Hilali M, Rafik M, Elharfi A. Polymer composite materials: a comprehensive review. Compos Struct. 2021;262:113640–54.

    CAS  Google Scholar 

  5. Shundo A, Yamamoto S, Tanaka K. Network formation and physical properties of epoxy resins for future practical applications. JACS Au. 2022;2:1522–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Browning CE. The mechanisms of elevated temperature property losses in high-performance structural epoxy resin matrix materials after exposure to high-humidity environments. Polym Eng Sci. 1978;1:16–24.

    Google Scholar 

  7. Feraboli P, Masini A. Development of carbon/epoxy structural components for a high-performance vehicle. Compos Part B. 2004;35:323–30.

    Google Scholar 

  8. Lahive CW, Dempsey SH, Reiber SE, Pal A, Stevenson KR, Michener WE, Alt HM, Ramirez KJ, Rognerud EG, Lincoln CL, Clarke RW, DesVeaux JS, Uekert T, Rorrer NA, Knauer KM, Beckham GT. Acetolysis for epoxy-amine carbon fibre-reinforced polymer recycling. Nature. 2025;642:605–12.

    CAS  PubMed  Google Scholar 

  9. Harada M, Yokoyama Y. Effect of the ordered network polymer structure of cyclic-siloxane-type liquid crystalline epoxy thermosets on their fracture toughness and thermal conductivity. Polym J. 2025;57:395–405.

    CAS  Google Scholar 

  10. Gledhill RA, Kinloch AJ, Yamini S, Young RJ. Relationship between mechanical properties and crack progogation in epoxy resin adhesives. Polymer. 1978;19:574–82.

    CAS  Google Scholar 

  11. Van Lijsebetten F, Maiheu T, Winne JM, Du Prez FE. Epoxy adhesives with reversible hardeners: controllable thermal debonding in bulk and at interfaces. Adv Mater. 2023;35:2300802–1-11.

    Google Scholar 

  12. Obayashi K, Kojio K. Adhesive properties of low-cross-linking density cured epoxy resin. Polym J. 2025;57:679–87.

    CAS  Google Scholar 

  13. Tanizaki S, Kubo S, Bito Y, Mori S, Aoki H, Satoh K. Development of a bio-based adhesive by polymerization of boc-protected vinyl catechol derived from caffeic acid. RSC Sustain. 2025;3:1714–20.

    CAS  Google Scholar 

  14. Wang K, Chen L, Wu JS, Toh ML, He CB, Yee AF. Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules. 2005;38:788–800.

    CAS  Google Scholar 

  15. Woodcock JW, Sheridan RJ, Beams R, Stranick SJ, Mitchell WF, Brinson LC, Gudapati V, Hartman D, Vaidya A, Gilman JW, Holmes GA. Damage sensing using a mechanophore crosslinked epoxy resin in single-fiber composites. Compos Sci Technol. 2020;192:108074–1-8.

    CAS  Google Scholar 

  16. Nguyen HK, Shundo A, Liang X, Yamamoto S, Tanaka K, Nakajima K. Unraveling nanoscale elastic and adhesive properties at the nanoparticle/epoxy interface using bimodal atomic force microscopy. ACS Appl Mater Interfaces. 2022;14:42713–22.

    CAS  PubMed  Google Scholar 

  17. Aoki N, Yamazaki J, Matsumoto T, Totani M, Shundo A, Tanaka K, Nishino T. Analyses and control of interphase structures and adhesion properties of epoxy resin/epoxy resin for development of CFRP adhesion systems. Compos Part A. 2024;187:108511–20.

    CAS  Google Scholar 

  18. Kobayashi T, Ogawa K, Maeda R, Wang P, Kubozono T, Yoshihara D, Yamamoto S, Yamada S, Tanaka K, Omiya M. Quantitative evaluation of crack arrest mechanisms in epoxy/silica nanocomposites. Compos Sci Technol. 2025;261:111028–36.

    CAS  Google Scholar 

  19. Yamamoto S, Tanaka K. Molecular dynamics simulation of cross-linked epoxy resins: past and future. Macromol Rapid Commun. 2025;46:2400978–1-20.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou JM, Lucas JP. Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy. Polymer. 1999;40:5505–12.

    CAS  Google Scholar 

  21. Yamamoto S, Kuwahara R, Tanaka K. Dynamic behaviour of water molecules in heterogeneous free space formed in an epoxy resin. Soft Matter. 2021;17:6073–80.

    CAS  PubMed  Google Scholar 

  22. Nakamura S, Tsuji Y, Yoshizawa K. Molecular dynamics study on the thermal aspects of the effect of water molecules at the adhesive interface on an adhesive structure. Langmuir. 2021;37:14724–32.

    CAS  PubMed  Google Scholar 

  23. Karuth A, Alesadi A, Vashisth A, Xia WJ, Rasulev B. Reactive molecular dynamics study of hygrothermal degradation of crosslinked epoxy polymers. ACS Appl Polym Mater. 2022;4:4411–23.

    CAS  Google Scholar 

  24. Liu Y, Miyata N, Miyazaki T, Shundo A, Kawaguchi D, Tanaka K, Aoki H. Neutron reflectometry analysis of condensed water layer formation at a solid interface of epoxy resins under high humidity. Langmuir. 2023;39:10154–62.

    CAS  PubMed  Google Scholar 

  25. Jiang Z, Ding Y, Chen Z, Zuo B. Quantitative characterization of the interfacial failure of metallic coatings on epoxy substrates in salty atmospheres. Polym J. 2025;57:1015–23.

    CAS  Google Scholar 

  26. Xiao GZ, Shanahan MER. Water absorption and desorption in an epoxy resin with degradation. J Polym Sci B Polym Phys. 1997;35:2659–70.

    CAS  Google Scholar 

  27. Musto P, Ragosta G, Abbate M, Scarinzi G. Photo-oxidation of high-performance epoxy networks: correlation between the molecular mechanisms of degradation and the viscoelastic and mechanical response. Macromolecules. 2008;41:5729–43.

    CAS  Google Scholar 

  28. Le Gac PY, Choqueuse D, Melot D. Description and modeling of polyurethane hydrolysis used as thermal insulation in oil offshore conditions. Polym Test. 2013;32:1588–93.

    Google Scholar 

  29. Zahra Y, Djouani F, Fayolle B, Kuntz M, Verdu J. Thermo-oxidative aging of epoxy coating systems. Prog Org Coat. 2014;77:380–7.

    CAS  Google Scholar 

  30. Richaud E, Derue I, Gilormini P, Verdu J, Vaulot C, Coquillat M, Desgardin N, Vandenbrouke A. Plasticizer effect on network structure and hydrolytic degradation. Eur Polym J. 2015;69:232–46.

    CAS  Google Scholar 

  31. Capiel G, Miccio LA, Montemartini PE, Schwartz GA. Water diffusion and hydrolysis effect on the structure and dynamics of epoxy-anhydride networks. Polym Degrad Stab. 2017;143:57–63.

    CAS  Google Scholar 

  32. Wu J, Dong J, Wang Y, Gond BK. Thermal oxidation ageing effects on silicone rubber sealing performance. Polym Degrad Stab. 2017;135:43–53.

    CAS  Google Scholar 

  33. Sousa J, Correia JR, Gabral-Fonseca S. Some permanent effects of hygrothermal and outdoor ageing on a structural polyurethane adhesive used in civil engineering applications. Int J Adhes Adhes. 2018;84:406–19.

    CAS  Google Scholar 

  34. Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci. 2019;90:211–68.

    CAS  Google Scholar 

  35. Rezig N, Bellahcene T, Aberkane M, Abdelaziz MN. Thermo‑oxidative ageing of an SBR rubber: effects on mechanical and chemical properties. J Polym Res. 2020;27:339–1-13.

    CAS  Google Scholar 

  36. Wang X, Yang K, Zhang P. Evaluation of the aging coefficient and the aging lifetime of carbon black-filled styrene-isoprene-butadiene rubber after thermal-oxidative aging. Compos Sci Technol. 2022;220:109258–1-8.

    CAS  Google Scholar 

  37. Lou W, Xie C, Guan X. Thermal-aging constitutive model for a silicone rubber foam under compression. Polym Degrad Stab. 2022;198:109873–1-9.

    CAS  Google Scholar 

  38. Mwafy EA, Gaafar MS. Dynamic mechanical characteristics of aged silicone rubber blend. Polym Bull. 2023;80:9015–32.

    CAS  Google Scholar 

  39. Luo Z, Wang L, Zhao B, Yin F, Li J, Cui B, Liu HY. Hygrothermal aging mechanism of epoxy composites used for medium-frequency transformers. Polym Degrad Stab. 2024;228:110913–1-10.

    CAS  Google Scholar 

  40. Yang D, Edgar AS, Billow BS, Brett JK. Hydrolysis of poly(ester urethane): in-depth mechanistic pathway determination through thermal and chemical characterization. Polym Degrad Stab. 2025;231:111084–1-14.

    CAS  Google Scholar 

  41. Russell GA. Fundamental processes of autoxidation. J Chem Educ. 1959;36:111–8.

    CAS  Google Scholar 

  42. Levchik SV, Camino G, Luda MP, Costa L, Muller G, Costes B. Epoxy resins cured with aminophenylmethylphosphine oxide–II. mechanism of thermal decomposition. Polym Degrad Stab. 1998;60:169–83.

    CAS  Google Scholar 

  43. Mailhot B, Morlat-Thérias S, Ouahioune M, Gardette JL. Study of the degradation of an epoxy/amine resin, 1 photo- and thermo-chemical mechanisms. Macromol Chem Phys. 2005;206:575–84.

    CAS  Google Scholar 

  44. Delozanne J, Desgardin N, Cuvillier N, Richaud E. Thermal oxidation of aromatic epoxy-diamine networks. Polym Degrad Stab. 2019;166:174–87.

    CAS  Google Scholar 

  45. Karuth A, Alesadi A, Vashisth A, Xia W, Rasulev B. Reactive molecular dynamics study of hygrothermal degradation of crosslinked epoxy polymers. ACS Appl Polym Mater. 2022;4:4411.

    CAS  Google Scholar 

  46. Marshall WL, Franck EU. Ion product of water substance, 0–1000 °C, 1–10,000 bars, new international formulation and its background. J Phys Chem Ref Data. 1981;10:295–304.

    CAS  Google Scholar 

  47. Pitzer KS. Self-ionization of water at high temperature and the thermodynamic properties of the ions. J Phys Chem. 1982;86:4704–8.

    CAS  Google Scholar 

  48. Liu YY, Wei HG, Wu SQ, Guo ZH. Decomposition of epoxy model compounds in near-critical water. Chem Eng Technol. 2013;36:2117–24.

    CAS  Google Scholar 

  49. Gong XY, Liu YY, Wu SQ, Ding DW, Wie H, Guo Z. Decomposition mechanisms of cured epoxy resins in near-critical water. J Appl Polym Sci. 2014;132:41648–1-11.

    Google Scholar 

  50. Yamamoto S, Phan NT, Kihara K, Shundo A, Tanaka K. Off-stoichiometry effect on the physical properties of epoxy resins. Polym J. 2025;57:357–66.

    CAS  Google Scholar 

  51. Rubinstein M, Colby RH. Polymer Physics. Canada: Oxford University Press; 2003.

  52. Yamaguchi K, Kawaguchi D, Miyata N, Miyazaki T, Aoki H, Yamamoto S, Tanaka K. Kinetics of the interfacial curing reaction for an epoxy–amine mixture. Phys Chem Chem Phys. 2022;24:21578–82.

    CAS  PubMed  Google Scholar 

  53. Shundo A, Phan NT, Aoki M, Tokunaga A, Kuwahara R, Yamamoto S, Tanaka K. Exploring the impact of molecular structure on curing kinetics: a comparative study of diglycidyl ether of bisphenol A and F epoxy resins. J Phys Chem B. 2024;128:4846–52.

    CAS  PubMed  Google Scholar 

  54. Kumamoto K, Shundo A, Yamamoto S, Tanaka K. One-time network rearrangement for homogenization of epoxy resin structures. Macromolecules. 2025;58:9636–44.

    CAS  PubMed Central  Google Scholar 

  55. Li K, Wang K, Zhan MS, Xu W. The change of thermal-mechanical properties and chemical structure of ambient-cured DGEBA/TEPA under accelerated thermo-oxidative aging. Polym Degrad Stab. 2013;98:2340–6.

    CAS  Google Scholar 

  56. Belec L, Nguyen TH, Nguyen DL, Chailan JF. Comparative effects of humid tropical weathering and artificial ageing on a model composite's properties from nano- to macro-scale. Compos Part A. 2015;68:235–41.

    CAS  Google Scholar 

  57. Ernault E, Dirrenberger J, Richaud E, Fayolle B. Prediction of stress induced by heterogeneous oxidation: case of epoxy/amine networks. Polym Degrad Stab. 2019;162:112–21.

    CAS  Google Scholar 

  58. Ishida T, Kitagaki R, Elakneswaran Y, Mizukado J, Shinzawa H, Sato H, Hagihara H, Watanabe R. Network degradation assessed by evolved gas analysis–mass spectrometry combined with principal component analysis (EGA–MS–PCA): a case of thermo-oxidized epoxy/amine network. Macromolecules. 2023;56:883–91.

    CAS  Google Scholar 

  59. Balabanovich AI, Hornung A, Merz D, Seffert H. The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins. Polym Degrad Stab. 2004;85:713–23.

    CAS  Google Scholar 

  60. Poljansek I, Krajnc M. Characterization of phenol-formaldehyde prepolymer resins by in-line FT-IR spectroscopy. Acta Chim Slov. 2005;52:238–44.

    Google Scholar 

  61. Sideridou ID, Vouvoudi EC, Papadopoulos GD. Epoxy polymer Hxtal NYL-1™ used in restoration and conservation: irradiation with short and long wavelengths and study of photo-oxidation by FT-IR spectroscopy. J Cult Herit. 2016;18:279–89.

    Google Scholar 

  62. Pike PR, Sworan PA, Cabaniss SE. Quantitative aqueous attenuated total reflectance fourier transform infrared spectroscopy: Part II. Integrated molar absorptivities of alkyl carboxylates. Anal Chim Acta. 1993;280:253–61.

  63. Hay MB, Myneni SCB. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: infrared spectroscopy. Geochim Cosmochim Acta. 2007;71:3518–32.

    CAS  Google Scholar 

  64. Galant C, Fayolle B, Kuntz M, Verdu J. Thermal and radio-oxidation of epoxy coatings. Prog Org Coat. 2010;69:322–29.

    CAS  Google Scholar 

  65. Shimokawaji T, Sudo A. Synthesis of partially bio-based triepoxides from naturally occurring myo-inositol and their polyadditions. J Polym Sci. 2020;58:1229–35.

    CAS  Google Scholar 

  66. Tokunaga A, Shundo A, Kuwahara R, Yamamoto S, Tanaka K. Effect of number density of epoxy functional groups on reaction kinetics for epoxy resin. Macromolecules. 2024;57:10530–8.

    CAS  Google Scholar 

  67. Marui R, Maeda H, Hatakeyama-Sato K, Nabae Y, Hayakawa T. Ortho-, meta-, versus para-substituted mesogens inducing higher-order structures for highly thermal-conductive cured epoxy resins. Macromolecules. 2024;57:11221–8.

    CAS  Google Scholar 

  68. Peyser P, Bascom WD. The anomalous lowering of the glass-transition of epoxy resin by plasticization with water. J Mater Sci. 1981;16:75–83.

    CAS  Google Scholar 

  69. Khan LA, Nesbitt A, Day RJ. Hygrothermal degradation of 977-2A carbon/epoxy composite laminates cured in autoclave and quickstep. Compos Part A. 2010;41:942–53.

    Google Scholar 

  70. Nogueira P, Ramírez C, Torres A, Abad MJ, Cano J, López J, López-bueno I, Barral L. Effect of water sorption on the structure and mechanical properties of an epoxy resin system. J Appl Polym Sci. 2001;80:71–80.

    CAS  Google Scholar 

  71. Mckague EL, Reynolds JD, Halkias JE. Swelling and glass-transition relations for epoxy matrix material in humid environments. J Appl Polym Sci. 1978;22:1643–54.

    CAS  Google Scholar 

  72. Maggana C, Pissis P. Water sorption and diffusion studies in an epoxy resin system. J Polym Sci Part B Polym Phys. 1998;37:1165–82.

    Google Scholar 

  73. Xiao GZ, Shanahan MER. Irreversible effects of hygrothermal aging on DGEBA/DDA epoxy resin. J Appl Polym Sci. 1998;69:363–9.

    CAS  Google Scholar 

  74. Wang M, Xu X, Ji J, Yang Y, Shen J, Ye M. The hygrothermal aging process and mechanism of the novolac epoxy resin. Compos Part B. 2016;107:1–8.

    Google Scholar 

  75. Xu K, Chen W, Zhu X, Liu L, Zhao Z, Luo G. Chemical, mechanical and morphological investigation on the hygrothermal aging mechanism of a toughened epoxy. Polym Test. 2022;110:107548–1-11.

    CAS  Google Scholar 

  76. Pedersen SN, Lindholst C. Quantification of the xenoestrogens 4-tert-octylphenol and bisphenol A in water and in fish tissue based on microwave-assisted extraction, solid-phase extraction and liquid chromatography–mass spectrometry. J Chromatogr A. 1999;864:17–24.

    CAS  PubMed  Google Scholar 

  77. Gallart-Ayala H, Moyano E. Multiple-stage mass spectrometry analysis of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether and their derivatives. Rapid Commun Mass Spectrom. 2010;24:3469–77.

    CAS  PubMed  Google Scholar 

  78. Longiéras N, Sebban M, Palmas P, Rivaton A, Gardette JL. Multiscale approach to investigate the radiochemical degradation of epoxy resins under high-energy electron-ream irradiation. J Polym Sci A Polym Chem. 2006;44:865–87.

    Google Scholar 

  79. Yan H, Lu CX, Jing DQ, Hou XL. Chemical degradation of amine-cured DGEBA epoxy resin in supercritical 1-propanol for recycling carbon fiber from composites. Chin J Polym Sci. 2014;32:1550–63.

    CAS  Google Scholar 

  80. Gong XY, Kang HJ, Liu YY, Wu SQ. Decomposition mechanisms and kinetics of amine/anhydride-cured DGEBA epoxy resin in near-critical water. RSC Adv. 2015;5:40269–82.

    CAS  Google Scholar 

  81. Urata K, Takaishi N. The Alkyl glycidyl ether as synthetic building blocks. Fresenius J Anal Chem. 1994;71:1027–33.

    CAS  Google Scholar 

  82. Paseiro-Losada P, Simal-Lozano J, Paz-Abuín S, López-Mahía P, Simal-Gándara J. Kinetics of the hydrolysis of bisphenol A diglycidyl ether (BADGE) in water-based food simulants - implications for legislation on the migration of BADGE-type epoxy resins into foodstuffs. Fresenius J Anal Chem. 1993;345:527–32.

    CAS  Google Scholar 

  83. Hanif M, Zahoor AF, Saif MJ, Nazeer U, Ali KG, Parveen B, Mansha A, Chaudhry AR, Irfan A. Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: a review. RSC Adv. 2024;14:13100–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gassman PG, Guggenheim TL. Opening of epoxides with trimethylsilyl cyanide to produce β-hydroxy isonitriles. A general synthesis of oxazolines and β-amino alcohols. J Am Chem Soc. 1982;104:5849–50.

    CAS  Google Scholar 

  85. Cole BM, Shimizu KD, Krueger CA, Harrity JP, Snapper ML, Hoveyda AH. Discovery of chiral catalysts through ligand diversity: Ti-catalyzed enantioselective addition of TMSCN to meso epoxides. Angew Chem Int Ed. 1996;35:1668–71.

    CAS  Google Scholar 

  86. Nugent WA. Desymmetrization of meso epoxides with halides: a new catalytic reaction based on mechanistic insight. J Am Chem Soc. 1998;120:7139–40.

    CAS  Google Scholar 

  87. Burwell RL. The cleavage of ethers. Chem Rev. 1954;54:615–85.

    CAS  Google Scholar 

  88. Klein E, Lukeš V. DFT/B3LYP study of O–H bond dissociation enthalpies of Para and Meta substituted phenols: correlation with the phenolic C–O bond length. J Mol Struct. 2006;767:43–50.

    CAS  Google Scholar 

  89. Atifi A, Talipov M, Mountacer H, Ryan MD, Sarakha MA. Density functional theory and laser flash photolysis investigation of carbofuran photodegradation in aqueous medium. J Photochem Photobiol A Chem. 2012;235:1–6.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI for Scientific Research (B) (No. 23K26707) to KT, Scientific Research (B) (No. 25K01836) to AS and Scientific Research (B) (No. 25K01825) to DK from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, and was in part supported by CERI Proposed Cooperative Research (KT). We are also thankful for the support of the JST-Mirai Program (JPMJMI18A2) (KT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atsuomi Shundo or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, K., Shundo, A., Taguchi, H. et al. Hygrothermal degradation mechanism of amine-cured epoxy resin. Polym J (2026). https://doi.org/10.1038/s41428-026-01150-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41428-026-01150-z

Search

Quick links