Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the assumptions underlying Mendelian randomization

Abstract

With the rapidly increasing availability of large genetic data sets in recent years, Mendelian Randomization (MR) has quickly gained popularity as a novel secondary analysis method. Leveraging genetic variants as instrumental variables, MR can be used to estimate the causal effects of one phenotype on another even when experimental research is not feasible, and therefore has the potential to be highly informative. It is dependent on strong assumptions however, often producing biased results if these are not met. It is therefore imperative that these assumptions are well-understood by researchers aiming to use MR, in order to evaluate their validity in the context of their analyses and data. The aim of this perspective is therefore to further elucidate these assumptions and the role they play in MR, as well as how different kinds of data can be used to further support them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical representation of valid instrument causal scenarios, for a variant j.
Fig. 2: Graphical representation of several violations of instrumental variable assumptions, for a variant j.
Fig. 3: Graphical representation of scenarios involving longitudinal data and imperfect measurement of variables, for a variant j.

Similar content being viewed by others

References

  1. Mills MC, Rahal C. A scientometric review of genome-wide association studies. Commun Biol. 2019;2:9.

    Article  Google Scholar 

  2. Pearl J. Causal inference in statistics: an overview. Stat Surv. 2009;3:96–146.

    Article  Google Scholar 

  3. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23:R89–98.

    Article  CAS  Google Scholar 

  4. von Hinke Kessler Scholder S, Smith GD, Lawlor DA, Propper C, Windmeijer F. Mendelian randomization: the use of genes in instrumental variable analyses. Health Econ. 2011;20:893–6.

    Article  Google Scholar 

  5. Sleiman PMA, Grant SFA. Mendelian randomization in the era of genomewide association studies. Clin Chem. 2010;56:723–8.

    Article  CAS  Google Scholar 

  6. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Smith GD. Statistical commentary best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr. 2016;103:965–78.

    Article  CAS  Google Scholar 

  7. Lousdal ML. An introduction to instrumental variable assumptions, validation and estimation. Emerg Themes Epidemiol. 2018;15:1.

    Article  Google Scholar 

  8. Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2020;4:186.

    Article  Google Scholar 

  9. Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ 2021;375:n2233.

    Article  Google Scholar 

  10. Burgess S, Butterworth AS, Thompson JR. Beyond Mendelian randomization: How to interpret evidence of shared genetic predictors. J Clin Epidemiol. 2016;69:208–16.

    Article  Google Scholar 

  11. von Hinke S, Davey Smith G, Lawlor DA, Propper C, Windmeijer F. Genetic markers as instrumental variables. J Health Econ. 2016;45:131–48.

    Article  Google Scholar 

  12. Teumer A. Common methods for performing Mendelian randomization. Front cardiovascular Med. 2018;5:51.

    Article  Google Scholar 

  13. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27:R195–208.

    Article  CAS  Google Scholar 

  14. Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun. 2018;9:224.

    Article  Google Scholar 

  15. Dai JY, Peters U, Wang X, Kocarnik J, Chang-Claude J, Slattery ML, et al. Diagnostics for pleiotropy in Mendelian randomization studies: global and individual tests for direct effects. Am J Epidemiol. 2018;187:2672–80.

    Article  Google Scholar 

  16. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.

    Article  CAS  Google Scholar 

  17. Bowden J, Davey, Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  Google Scholar 

  18. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

    Article  Google Scholar 

  19. Burgess S, Zuber V, Gkatzionis A, Foley CN. Modal-based estimation via heterogeneity-penalized weighting: model averaging for consistent and efficient estimation in Mendelian randomization when a plurality of candidate instruments are valid. Int J Epidemiol. 2018;47:1242–54.

    Article  Google Scholar 

  20. Qi G, Chatterjee N. Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects. Nat Commun. 2019;10:1941.

    Article  Google Scholar 

  21. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89.

    Article  Google Scholar 

  22. Bucur IG, Claassen T, Heskes T. Inferring the direction of a causal link and estimating its effect via a Bayesian Mendelian randomization approach. Stat Methods Med Res. 2020;29:1081–111.

    Article  Google Scholar 

  23. Darrous L, Mounier N, Kutalik Z. Simultaneous estimation of bi-directional causal effects and heritable confounding from GWAS summary statistics. Genet Genom Med. 2020. http://medrxiv.org/lookup/doi/10.1101/2020.01.27.20018929.

  24. Morrison J, Knoblauch N, Marcus JH, Stephens M, He X. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet. 2020;52:740–7.

    Article  CAS  Google Scholar 

  25. Cho Y, Haycock PC, Sanderson E, Gaunt TR, Zheng J, Morris AP, et al. Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework. Nat Commun. 2020;11:1010.

    Article  CAS  Google Scholar 

  26. Rees JMB, Wood AM, Burgess S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat Med. 2017;36:4705–18.

    Article  Google Scholar 

  27. Gkatzionis A, Burgess S. Contextualizing selection bias in Mendelian randomization: how bad is it likely to be? Int J Epidemiol. 2019;48:691–701.

    Article  Google Scholar 

  28. Swanson SA, Tiemeier H, Ikram MA, Hernán MA. Nature as a trialist?: deconstructing the analogy between Mendelian randomization and randomized trials. Epidemiology. 2017;28:653–9.

    Article  Google Scholar 

  29. Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls. Epidemiology. 2010;21:383–8.

    Article  Google Scholar 

  30. Chen L, Davey Smith G, Harbord RM, Lewis SJ. Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS Med. 2008;5:e52.

  31. Van Kippersluis H, Rietveld CA. Pleiotropy-robust Mendelian randomization. Int J Epidemiol. 2018;47:1279–88.

    Article  Google Scholar 

  32. Richardson TG, Sanderson E, Elsworth B, Tilling K, Smith GD. Use of genetic variation to separate the effects of early and later life adiposity on disease risk: mendelian randomisation study. BMJ 2020;369:m1203.

    Article  Google Scholar 

  33. Streeter AJ, Lin NX, Crathorne L, Haasova M, Hyde C, Melzer D, et al. Adjusting for unmeasured confounding in nonrandomized longitudinal studies: a methodological review. J Clin Epidemiol. 2017;87:23–34.

    Article  Google Scholar 

  34. Sanderson E, Richardson T, Hemani G, Smith GD. The use of negative control outcomes in Mendelian Randomisation to detect potential population stratification or selection bias. bioRxiv. 2020. https://doi.org/10.1101/2020.06.01.128264.

  35. Hughes RA, Davies NM, Davey Smith G, Tilling K. Selection bias when estimating average treatment effects using one-sample instrumental variable analysis. Epidemiology. 2019;30:350–7.

    Article  Google Scholar 

  36. Smit RAJ, Trompet S, Dekkers OM, Jukema JW, Le, Cessie S. Survival bias in Mendelian randomization studies: a threat to causal inference. Epidemiology. 2019;30:813–6.

    Article  Google Scholar 

  37. Swanson SA. A practical guide to selection bias in instrumental variable analyses. Epidemiology. 2019;30:345–9.

  38. Pierce BL, Vanderweele TJ. The effect of non-differential measurement error on bias, precision and power in Mendelian randomization studies. Int J Epidemiol. 2012;41:1383–93.

    Article  Google Scholar 

  39. Hemani G, Tilling K, Davey, Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13:1–22.

    Google Scholar 

  40. Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates. Eur J Epidemiol. 2018;33:947–52.

    Article  Google Scholar 

  41. Burgess S, Butterworth A, Malarstig A, Thompson SG. Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ. 2012;345:1–6.

    Article  Google Scholar 

  42. Swanson SA, Hernan MA. The challenging interpretation of instrumental variable estimates under monotonicity. Int J Epidemiol. 2018;47:1289–97.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by The Netherlands Organization for Scientific Research (NWO VICI 453-14-005 (DP), 645-000-003 (DP), CHiLL 617-001-451 (IGB)) and by F. Hoffman-La Roche AG (CdL).

Author information

Authors and Affiliations

Authors

Contributions

CdL wrote and revised the paper. The other authors contributed to revision and editing.

Corresponding author

Correspondence to Christiaan de Leeuw.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Leeuw, C., Savage, J., Bucur, I.G. et al. Understanding the assumptions underlying Mendelian randomization. Eur J Hum Genet 30, 653–660 (2022). https://doi.org/10.1038/s41431-022-01038-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41431-022-01038-5

This article is cited by

Search

Quick links