Abstract
In human retina, photoreceptor cell death (PCD) is a slow but conspicuous event, which continues with aging. Rods die earlier than cones, the latter continue to alter in a subtle manner until advanced aging. This review summarizes the existing information on age-related changes in photoreceptor cells, especially cones and analyses the possible associated factors. Oxidative and nitrosative stress are involved in photoreceptor alterations, which may stem from light and iron toxicity and other sources. Lipid peroxidation in macular photoreceptor outer segments and mitochondrial aberrations are prominent in aging. It is important to understand how those changes ultimately trigger PCD. The redistribution of calbindin D-28K and long/middle-wavelength-sensitive opsin in the parafoveal and perifoveal cones, anomalies in their somata and axons are strong predictors of their increasing vulnerability with aging. Signs of reduced autophagy, with autophagosomes containing organelle remnants are seen in aging photoreceptor cells. Currently, mechanisms that lead to human PCD are unknown; some observations favour apoptosis as a pathway. Since cones appear to change slowly, there is an opportunity to reverse those changes before they die. Therefore, a full understanding of how cones alter and the molecular pathways they utilize for survival must be the future research goal. Recent approaches to prevent PCD in aging and diseases are highlighted.
摘要
在人类视网膜中, 感光细胞死亡 (photoreceptor cell death, PCD) 是一个缓慢而显著的过程, 并随着年龄的增长而持续。视杆细胞比视锥细胞死亡发生的更早, 但后者以微妙的方式继续改变, 直到老年。这篇综述总结了光感受器与年龄相关变化的现有资料, 特别是视锥细胞, 并分析了可能的相关因素。氧化和亚硝化应激与光感受器的改变有关, 这源于光和铁的毒性以及其他来源。黄斑光感受器外节脂质过氧化和线粒体畸变在衰老过程中尤为突出。重要的是要了解这些改变最终是如何触发PCD的。随年龄增加, 钙结合蛋白D-28K和长/中波长敏感视蛋白在中心凹旁和中心凹周围的视锥细胞中重新分布, 因此视锥细胞神经元胞体和轴突异常是易受损的强预测因子。在老化的光感受器中可以看到自噬减少的迹象, 自噬小体内含有细胞器残余物。目前, 导致人类PCD的机制尚不清楚;一些研究认为其通过细胞凋亡的信号通路。由于视锥细胞变化缓慢, 所以有机会在它们死亡之前逆转这些变化。因此, 全面了解视锥细胞是如何改变的, 视锥细胞赖以生存的分子信号传导通路是未来的研究目标。另外, 我们强调了近期关于防止 PCD在衰老以及疾病中的作用。
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Luthert PJ, Chong NHV. Photoreceptor rescue. Eye. 1998;12:591–6.
Gartner S, Henkind P. Aging and degeneration of the human macula: 1. outer nuclear and photoreceptors. Br J Ophthalmol. 1981;65:23–8.
Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina: relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30:1691–9.
Gao H, Hollyfield JG. Aging of the human retina. Invest Ophthalmol Vis Sci. 1992;33:1–17.
Curcio CA, Millican CL, Allen KA, Kalina RE. Ageing of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci. 1993;34:3278–96.
Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal photoreceptor density decreases with age. Ophthalmology. 1995;102:1853–59.
Stone J, Maslim J, Valter-Kocsi K, Mervin K, Bowers F, Chu Y, et al. Mechanisms of photoreceptor death and survival in mammalian retina. Prog Ret Eye Res. 1999;18:689–735.
Jackson GR, Owsley C, Curcio CA. Photoreceptor degeneration and dysfunction in aging and age-related maculopathy. Ageing Res Rev. 2002;1:381–96.
Pierce EA. Pathways to photoreceptor cell death in inherited retinal degenerations. Bioessays. 2001;23:605–18.
Marshall J, Grindle J, Ansell PL, Borwein B. Convolution in human rods: an ageing process. Br J Ophthalmol. 1979;63:181–7.
Nag TC, Wadhwa S. Ultrastructure of the human retina in aging and various pathological states. Micron. 2012;43:759–81.
Sommerburg OG, Siems WG, Hurst JS. Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr Eye Res. 1999;19:491–5.
Rapp LM, Maple SS, Choi JH. Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci. 2000;41:1200–9.
LaVail MM, Unoki K, Yasumura D, Matthes MT, Yancopoulos GD, Steinberg RH. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci U S A. 1992;89:11249–53.
Li Y, Tao W, Luo L, Huang D, Kauper K, Stabila P, et al. CNTF induces regeneration of cone outer segments in a rat model of retinal degeneration. PLoS ONE. 2010;5:e9495.
Xia X, Li Y, Huang D, Wang Z, Luo L, Song Y, et al. Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration. PLoS ONE. 2011;6:e18282.
Horton JC, Parker AB, Botelho JV, Duncan JL. Spontaneous regeneration of human photoreceptor outer segments. Sci Rep. 2015;5:12364.
Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJS, Fullmer KR, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A. 2006;103:3896–901.
Young RW, Bok D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol. 1969;42:392–403.
Ferrington DA, Sinha D, Kaarniranta K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog Ret Eye Res. 2016;51:69–89.
Inana G, Murat C, An W, Yao X, Harris IR, Cao J. RPE phagocytic function declines in age-related macular degeneration and is rescued by human umbilical tissue derived cells. J Trans Med. 2018;16:63.
Hogan MJ, Alvarado, JA, Weddell JE. Histology of the human eye: an Atlas and Textbook. Philadelphia: Saunders; 1971.
Hoang QV, Linsenmeier RA, Chung CK, Curcio CA. Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci. 2002;19:395–407.
Nag TC, Wadhwa S, Chaudhury S. The occurrence of cone inclusions in the ageing human retina and their possible effect upon vision: an electron microscope study. Brain Res Bull. 2016;71:224–32.
Nag TC, Wadhwa S. Immunolocalisation pattern of complex I–V in ageing human retina: correlation with mitochondrial ultrastructure. Mitochondrion. 2016;31:20–32.
Nag TC, Kumar P, Wadhwa S. Age related distribution of 4-hydroxy 2-nonenal immunoreactivity in human retina. Exp Eye Res. 2017;165:25–35.
Nag TC, Kathpalia P, Gorla S, Wadhwa S. Localization of nitro-tyrosine immunoreactivity in human retina. Ann Anat. 2019;223:8–18.
Barron MJ, Johnson MA, Andrews RM, Clarke MP, Griffiths PG, Bristow E, et al. Mitochondrial abnormalities in aging macular photoreceptors. Invest Ophthalmol Vis Sci. 2001;42:3016–22.
Jarrett SG, Lin H, Godley BF, Boulton ME. Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Ret Eye Res. 2008;27:596–607.
Kenney MC, Atilano SR, Boyer D, Chwa M, Chak G, Chinichian S, et al. Characterization of retinal and blood mitochondrial DNA from age-related macular degeneration Patients. Invest Ophthalmol Vis Sci. 2010;51:4289–97.
Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA. Age-related macular degeneration and retinal protein modification by 4-hydroxy-2-nonenal. Invest Ophthalmol Vis Sci. 2007;48:3469–79.
Sivapathasuntharam C, Sivaprasad S, Hogg C, Jeffery G. Improving mitochondrial function significantly reduces the rate of age related photoreceptor loss. Exp Eye Res. 2019;185:107691.
Shinhmar H, Grewal M, Sivaprasad S, Hogg C, Chong V, Neveu M, et al. Optically improved mitochondrial function redeems aged human visual decline. J Gerontol A Biol Sci Med Sci. 2020;75:e49–52.
Ebeling MC, Polanco JR, Qu J, Tu C, Montezuma SR, Ferrington DA. Improving retinal mitochondrial function as a treatment for age-related macular degeneration. Redox Biol. 2020;34:101552.
Eckmiller MS. Defective cone photoreceptor cytoskeleton, alignment, feedback, and energetics can lead to energy depletion in macular degeneration. Prog Ret Eye Res. 2004;23:495–522.
Nag TC, Kathpalia P, Wadhwa D. Microtubule alterations may destabilize photoreceptor integrity: age-related microtubule changes and pattern of expression of MAP-2, Tau and hyperphosphorylated Tau in aging human photoreceptor cells. Exp Eye Res. 2020;198:108153.
Haley TL, Pochet R, Baizer L, Burton MD, Crabb JW, Parmentier M, et al. Calbindin D-28K immunoreactivity of human cone cells varies with retinal position. Vis Neurosci. 1995;12:301–7.
Nag TC, Wadhwa S. Calbindin and parvalbumin immunoreactivity in the developing and adult human retina. Dev Brain Res. 1996;93:23–32.
Nag TC, Wadhwa S. Developmental expression of calretinin immunoreactivity in the human retina and a comparison with two other EF-hand calcium-binding proteins. Neuroscience. 1999;91:41–50.
Pow DV, Sullivan RK. Nuclear kinesis, neurite sprouting and abnormal axonal projections of cone photoreceptors in the aged and AMD-afflicted human retina. Exp Eye Res. 2007;84:850–7.
Krizaj D. Calcium stores in vertebrate photoreceptors. Adv Exp Med Biol. 2012;740:873–89.
Doonan F, Donovan M, Cotter TG. Activation of multiple pathways during photoreceptor apoptosis in the rd mouse. Invest Ophthalmol Vis Sci. 2005;46:3530–8.
Shelley EJ, Madigan MC, Natoli R, Penfold PL, Provis JM. Cone degeneration in aging and age-related macular degeneration. Arch Ophthalmol. 2009;127:483–92.
Chiquet C, Dkhissi-Benyahya O, Chounlamountri N, Szel A, Degrip WJ, Cooper HM. Characterization of calbindin-positive cones in primates. Neuroscience. 2002;115:1323–33.
Weinrich TW, Powner MB, Lynch A, Jonnal RS, Werner JS, Jeffery G. No evidence for loss of short wavelength sensitive cone photoreceptors in normal ageing of the primate retina. Sci Rep. 2017;7:46346.
Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. The aging rat retina: from function to anatomy. Neurobiol Aging. 2018;61:146–68.
Cunea A, Powner MB, Jeffery G. Death by color: differential cone loss in the aging mouse retina. Neurobiol Aging. 2014;35:2584–91.
Johnson PT, Brown MN, Pulliam BC, Anderson DH, Johnson LV. Synaptic pathology, altered gene expression, and degeneration in photoreceptors impacted by drusen. Invest Ophthalmol Vis Sci. 2005;46:4788–95.
Eliasieh K, Liets LC, Chalupa LM. Cellular reorganization in the human retina during normal aging. Invest Ophthalmol Vis Sci. 2007;48:2824–30.
Sullivan RK, Woldemussie E, Pow DV. Dendritic and synaptic plasticity of neurons in the human age-related macular degeneration retina. Invest Ophthalmol Vis Sci. 2007;48:2782–91.
Curcio CA, Saunders PL, Younger PW, Malek G. Peripapillary chorioretinal atrophy: Bruch’s membrane changes and photoreceptor loss. Ophthalmology. 2000;107:334–43.
Feeney-Burns L, Burns RP, Gao C-L. Age-related macular changes in humans over 90 years old. Am J Ophthalmol. 1990;109:265–78.
Song H, Ping Chui TY, Zhong Z, Elsner AE, Burns SA. Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest Ophthalmol Vis Sci. 2011;52:7376–84.
Tso MOM, Xu GZ, Li WWY. Apoptosis in human retinal degenerations. Trans Am Ophthalmol Soc. 1996;154:411–30.
Dunaief JL, Dentchev T, Ying G-S, Milam AH. The role of apoptosis in age-related macular degeneration. Arch Ophthalmol. 2002;120:1435–42.
Wenzel A, Grimm C, Samardzija M, Remé CE. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Ret Eye Res. 2005;24:275–306.
Kaarniranta K, Tokarz P, Koskela A, Paterno J, Blasiak J. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biol Toxicol. 2017;33:113–28.
Mohand-Said S, Deudon-Combe A, Hicks D, Simonutti M, Forster V, Fintz AC, et al. Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc Natl Acad Sci U S A. 1998;95:8357–62.
Leveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz AC, Clérin E, et al. Identification and characterization of rod-derived cone viability factor. Nat Genet. 2004;36:755–9.
Beatty S, Koh H, Phil M, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2002;45:115–34.
Handa JT. How does the macula protect itself from oxidative stress? Mol Asp Med. 2012;33:418–35.
Snodderly DM. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr. 1995;62:1448S–61S.
De La Paz MA, Zhang J, Fridovich I. Antioxidant enzymes of the human retina: effect of age on enzyme activity of macula and periphery. Curr Eye Res. 1996;15:273–8.
El-Sayyad HI, Khalifa SA, El-Sayyad FI, Mousa SA, Mohammed EAM. Analysis of fine structure and biochemical changes of retina during aging of Wistar albino rats. Clin Exp Ophthalmol. 2014;42:169–81.
Kapphahn RJ, Giwa BM, Berg KM, Roehrich H, Feng X, Olsen TW, et al. Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets. Exp Eye Res. 2006;83:165–75.
De La Paz MA, Anderson RE. Regional and age-dependent variation in susceptibility of the human retina to lipid peroxidation. Invest Ophthalmol Vis Sci. 1992;33:3497–9.
Nag TC, Wadhwa S, Alladi PA, Sanyal T. Localisation of 4-hydroxy 2 nonenal immunoreactivity in ageing human retinal Müller cells. Ann Anat. 2011;193:205–10.
Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6:662–80.
Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002;134:411–31.
Curcio CA, Medeiros NE, Millican CL. Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1996;37:1236–49.
Johnson PT, Lewis GP, Talaga KC, Brown MN, Kappel PJ, Fisher SK, et al. Drusen-associated degeneration in the retina. Invest Ophthalmol Vis Sci. 2003;44:4481–88.
Hahn P, Ying GS, Beard J, Dunaief JL. Iron levels in human retina: sex difference and increase with age. Neuroreport. 2006;17:1803–6.
Noell WK, Walker VS, Kang BS, Berman S. Retinal damage by light in rats. Invest Ophthalmol. 1966;5:450–73.
Organisciak DT, Vaughan DK. Retinal light damage: mechanisms and protection. Prog Ret Eye Res. 2010;29:113–34.
Jha KA, Nag TC, Kumar V, Kumar P, Kumar B, Wadhwa S, et al. Differential expression of AQP1 and AQP4 in avascular chick retina exposed to moderate light of variable photoperiods. Neurochem Res. 2015;40:2153–66.
Natoli R, Jiao H, Barnett NL, Fernando N, Valter K, Provis JM, et al. A model of progressive photo-oxidative degeneration and inflammation in the pigmented C57BL/6J mouse retina. Exp Eye Res. 2016;147:114–27.
Gupta CL, Nag TC, Jha KA, Kathpalia P, Maurya M, Kumar P, et al. Changes in the inner retinal cells after intense and constant light exposure in Sprague-Dawley rats. Photochem Photobiol. 2020;96:1061–73.
Wiegand RD, Giusto NM, Rapp LM, Anderson RE. Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest Ophthalmol Vis Sci. 1983;24:1433–35.
Grosche J, Härtig W, Reichenbach A. Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and Bcl-2 protooncogene protein by Müller (glial) cells in retinal light damage of rats. Neurosci Lett. 1995;185:119–22.
Montalbán-Soler L, Alarcón-Martínez L, Jiménez-López M, Salinas-Navarro M, Galindo-Romero C, Bezerra de Sá F, et al. Retinal compensatory changes after light damage in albino mice. Mol Vis. 2012;18:675–93.
Samardzija M, Todorova V, Gougoulakis L, Barben M, Nötzli S, Klee K, et al. Light stress affects cones and horizontal cells via rhodopsin-mediated mechanisms. Exp Eye Res. 2019;186:107719.
Jozwick C, Valter K, Stone J. Reversal of functional loss in the P23H-3 rat retina by management of ambient light. Exp Eye Res. 2006;83:1074–80.
Bernstein PS, Khachik F, Carvalho LS, Muir GJ, Zhao DY, Katz NB, et al. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Exp Eye Res. 2001;72:215–23.
Hahn P, Song Y, Ying GS, He X, Beard J, Dunaief JL. Age-dependent and gender-specific changes in mouse tissue iron by strain. Exp Gerontol. 2009;44:594–600.
Kumar P, Nag TC, Jha KA, Dey SK, Kathpalia P, Maurya M, et al. Experimental oral iron administration: Histological investigations and expressions of iron handling proteins in rat retina with aging. Toxicology. 2017;392:22–31.
Hahn P, Milam AH, Dunaief JL. Maculas affected by age-related macular degeneration contain increased chelatable iron in the retinal pigment epithelium and Bruch’s membrane. Arch Ophthalmol. 2003;121:1099–105.
Gnana-Prakasam JP, Martin PM, Smith SB, Ganapathy V. Expression and function of iron-regulatory proteins in retina. IUBMB Life. 2010;62:363–70.
Biesemeier A, Yoeruek E, Eibl O, Schraermeyer U. Iron accumulation in Bruch’s membrane and melanosomes of donor eyes with age-related macular degeneration. Exp Eye Res. 2015;137:39–49.
Picard E, Ranchon-Cole I, Jonet L, Beaumont C, Behar-Cohen F, Courtois Y, et al. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging. Invest Ophthalmol Vis Sci. 2011;52:1261–74.
Rogers BS, Symons RCA, Komeima K, Shen J, Xiao W, Swaim ME, et al. Differential sensitivity of cones to iron-mediated oxidative damage. Invest Ophthalmol Vis Sci. 2007;48:438–45.
Shu W, Dunaief JL. Potential treatment of retinal diseases with iron chelators. Pharmaceuticals. 2018;11:112.
Remé CE. Autography in visual cells and pigment epithelium. Invest Ophthalmol Vis Sci. 1977;16:807–14.
Chen Y, Sawada O, Kohno H, Le YZ, Subauste C, Maeda T, et al. Autophagy protects the retina from light-induced degeneration. J Biol Chem. 2013;288:7506–18.
Mitter SK, Song C, Qi X, Mao H, Rao H, Akin D, et al. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy. 2014;10:1989–2005.
Tucker GS. Refractile bodies in the inner segments of cones in the aging human retina. Invest Ophthalmol Vis Sci. 1986;27:708–15.
Iwasaki M, Inomata H. Lipofuscin granules in human photoreceptor cells. Invest Ophthalmol Vis Sci. 1988;29:671–9.
Zhou J, Jang YP, Kim SR, Sparrow JR. Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A. 2006;103:16182–87.
Boyer DS, Rosenfield PJ. New pathways for dry AMD treatment. Several potential therapies are in clinical trials. Ret Physician. 2019;16:24–5.
Park DH, Connor KM, Lambris JD. The challenges and promise of complement therapeutics for ocular diseases. Front Immunol. 2019;10:1007.
Rohrer B, Guo Y, Kunchithapautham K, Gilkeson GS. Eliminating complement factor D reduces photoreceptor susceptibility to light-induced damage. Invest Ophthalmol Vis Sci. 2007;48:5282–9.
Rosenfeld PJ, Berger B, Reichel E, Danis RP, Gress A, Ye L, et al. A randomized phase 2 study of an anti-amyloid β monoclonal antibody in geographic atrophy secondary to age-related macular degeneration. Ophthalmol Retin. 2018;2:1028–40.
Rosenfeld PJ, Dugel PU, Holz FG, Heier JS, Pearlman JA, Novack RL, et al. Emixustat hydrochloride for geographic atrophy secondary to age-related macular degeneration: a randomized clinical trial. Ophthalmology. 2018;125:1556–67.
Holz FG, Sadda SR, Busbee B, Chew EY, Mitchell P, Tufail A, et al. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: Chroma and Spectri phase 3 randomized clinical trials. JAMA Ophthalmol. 2018;136:666–77.
Liao DS, Grossi FV, El Mehdi D, Gerber M, Brown DM, Heier JS, et al. Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmology. 2020;127:186–95.
Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119:1417–36.
Aronow ME, Chew EY. AREDS2: perspectives, recommendations, and unanswered questions. Curr Opin Ophthalmol. 2014;25:186–90.
Rojas JC, Gonzalaz-Lima F. Low level light therapy of the eye and brain. Eye Brain. 2011;3:49–67.
Merry GF, Munk MR, Dotson RS, Walker MG, Devenyi RG. Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration. Acta Ophthalmol. 2017;95:e270–7.
Hicks D, Forster V, Dreyfus H, Sahel J. Survival and regeneration of adult human photoreceptors in vitro. Brain Res. 1994;643:302–5.
Kaemmerer E, Schutt F, Krohne TU, Holz FG, Kopitz J. Effects of lipid peroxidation-related protein modifications on rpe lysosomal functions and pos phagocytosis. Invest Ophthalmol Vis Sci. 2007;48:1342–47.
Acknowledgements
The work was supported by grants from the DBT (BT/PR10195/BRB/10/589/2007), SERB (SERB-AS-27/2012) and CSIR (No. 37/1593/13/EMR-II), New Delhi, India. The eyes were procured from National Eye Bank, AIIMS via approval of Institute human Ethics Committee (No. IEC/NP-57/2010). The protocol adhered to the tenets of Helsinki Declarations. TEM work was done at SAIF-New Delhi, AIIMS.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Nag, T.C. Pathogenic mechanisms contributing to the vulnerability of aging human photoreceptor cells. Eye 35, 2917–2929 (2021). https://doi.org/10.1038/s41433-021-01602-1
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41433-021-01602-1
This article is cited by
-
Characterization of the depolarization contrast line in the outer retina using polarization-sensitive optical coherence tomography
Scientific Reports (2025)
-
Regulatory T cells limit age-associated retinal inflammation and neurodegeneration
Molecular Neurodegeneration (2024)
-
Microglia activation and neuronal alterations in retinas from COVID-19 patients: correlation with clinical parameters
Eye and Vision (2023)