Abstract
Background
The purpose of this study was to compare driving-simulator performance of participants with visual-field loss (VFL) from panretinal photocoagulation (PRP) of proliferative diabetic retinopathy (PDR) with a normally sighted control group. Furthermore, we investigated the effects of VFL of different extent on driving.
Methods
Data on performance and safety from a traffic-simulator test for 27 participants with VFL from PRP of PDR were retrospectively compared with data from 83 individuals without visual deficits in a cross-sectional study. Individuals with diabetes that regained their driving licences after a successful simulator test were then followed in a national accident database.
Results
Diabetes participants passed the test in 56% of the cases. Compared with the control group, diabetes participants had more risky “failed to give way” events and longer reaction times. Failed diabetes participants had lower mean sensitivity in the superior visual field than those who passed. None of the participants with a regained licence were involved in a motor vehicle accident during the 3–6-year follow-up after the simulator test.
Conclusions
Diabetes participants had worse performance and safety than the controls. However, even individuals with VFL from PRP might drive safely, which highlights the need for individual assessments in licencing issues.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Owsley C. The vision and driving challenge. J Neuroophthalmol. 2010;30:115–6.
Bro T, Lindblom B. Strain out a gnat and swallow a camel? - vision and driving in the Nordic countries. Acta ophthalmologica. 2018;96:623–30.
Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–64.
The Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol. 1976;81:383–96.
Hulbert MF, Vernon SA. Passing the DVLC field regulations following bilateral pan-retinal photocoagulation in diabetics. Eye. 1992;6:456–60. Pt 5
Mackie SW, Webb LA, Hutchison BM, Hammer HM, Barrie T, Walsh G. How much blame can be placed on laser photocoagulation for failure to attain driving standards? Eye. 1995;9:517–25. Pt 4
Buckley SA, Jenkins L, Benjamin L. Fields, DVLC and panretinal photocoagulation. Eye. 1992;6:623–5. Pt 6
Muqit MM, Wakely L, Stanga PE, Henson DB, Ghanchi FD. Effects of conventional argon panretinal laser photocoagulation on retinal nerve fibre layer and driving visual fields in diabetic retinopathy. Eye. 2010;24:1136–42.
Subash M, Comyn O, Samy A, Qatarneh D, Antonakis S, Mehat M, et al. The effect of multispot laser panretinal photocoagulation on retinal sensitivity and driving eligibility in patients with diabetic retinopathy. JAMA Ophthalmol. 2016;134:666–72.
Gross JG, Glassman AR, Liu D, Sun JK, Antoszyk AN, Baker CW, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol. 2018;136:1138–48.
McCloskey LW, Koepsell TD, Wolf ME, Buchner DM. Motor vehicle collision injuries and sensory impairments of older drivers. Age Ageing. 1994;23:267–73.
Szlyk JP, Mahler CL, Seiple W, Vajaranant TS, Blair NP, Shahidi M. Relationship of retinal structural and clinical vision parameters to driving performance of diabetic retinopathy patients. J Rehabil Res Dev. 2004;41:347–58.
TSFS 2010:125. Transportstyrelsens föreskrifter om medicinska krav för innehav av körkort m.m. [The Swedish Transport Agency’s regulations on medical requirements for holding a driving license, etc.]. Available from https://www.transportstyrelsen.se/TSFS/TSFS%202010_125k.pdf. Accessed 2 September 2021.
Nordmark S, Jansson H, Palmkvist G, Sehammar H. The new VTI driving simulator - Multi purpose moving base with high performance linear motion. Paris, 2004. Driving Simulation Conference; Paris, 2004.
Andersson J, Peters B. The importance of reaction time, cognition, and meta-cognition abilities for drivers with visual deficits. Cogn Tech Work. 2019. 101007/s10111-019-00619-7 2019.
Mamdoohi AR, Zavareh MF, Hydén C, Nordjaern T. Comparative analysis of safety performance indicators based on inductive loop detector data. Promet Traffic Transp. 2014;26:139–49.
Östlund J, Peters B, Thorslund B, Engström J, Markkula G, Keinath A et al. The Adaptive Integrated Driver-vehicle Interface Deliverable D2.2.5: Adaptive integrated driver-vehicle interface. Information Society Technologies Programme; 2005.
Ferrante C, Varladi V, De Blasiis MR. Gender differences measured on driving performances in an urban simulated environment. In: Cassenti D, editor. Advances in Human Factors and Simulation. AHFE 2019. Advances in Intelligent Systems and Computing; 2020. 958.
Padilla-Medina JA, Prado-Olivarez J, Amador-Licona N, Cardona-Torres LM, Galicia-Resendiz D, Diaz-Carmona J. Study on simple reaction and choice times in patients with type I diabetes. Comput Biol Med. 2013;43:368–76.
Kunimatsu-Sanuki S, Iwase A, Araie M, Aoki Y, Hara T, Fukuchi T, et al. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Br J Ophthalmol. 2017;101:896–901.
Kubler TC, Kasneci E, Rosenstiel W, Heister M, Aehling K, Nagel K et al. Driving with Glaucoma: Task Performance and Gaze Movements. Optom Vis Sci. 2015;92:1037–46.
Smith M, Mole CD, Kountouriotis GK, Chisholm C, Bhakta B, Wilkie RM. Driving with homonymous visual field loss: Does visual search performance predict hazard detection? Br J Occup Ther. 2015;78: 85–95.
Bahnemann M, Hamel J, De Beukelaer S, Ohl S, Kehrer S, Audebert H, et al. Compensatory eye and head movements of patients with homonymous hemianopia in the naturalistic setting of a driving simulation. J Neurol. 2015;262:316–25.
Ungewiss J, Kubler T, Sippel K, Aehling K, Heister M, Rosenstiel W, et al. Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss. Graefe’s Arch Clin Exp Ophthalmol. 2018;256:2429–35.
Bro T, Andersson J. The effects of visual field loss from glaucoma on performance in a driving simulator. Acta Ophthalmol. 2021; 10.1111/aos.14765 [Epub ahead of print].
McKnight AJ, McKnight AS. Multivariate analysis of age-related driver ability and performance deficits. Accid; Anal Prev. 1999;31:445–54.
Bowers AR. Driving with homonymous visual field loss: a review of the literature. Clin Exp Optom. 2016;99:402–18.
Funding
This study was funded by Trafikverket, Skyltfonden (TRV 2018/25726).
Author information
Authors and Affiliations
Contributions
JA was responsible for the study design and extracting data. TB wrote the report. Both JA and TB analyzed data and interpreted the results.
Corresponding author
Ethics declarations
Competing interests
This study was funded by Trafikverket, Skyltfonden (TRV 2018/25726). The authors declare no potential conflicts of interest with respect to the research, authorship, or publication of this article.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bro, T., Andersson, J. The effects of visual-field loss from panretinal photocoagulation of proliferative diabetic retinopathy on performance in a driving simulator. Eye 37, 103–108 (2023). https://doi.org/10.1038/s41433-021-01832-3
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41433-021-01832-3
This article is cited by
-
New targets in diabetic retinopathy: addressing limitations of current treatments through the Sema3A/Nrp1 pathway
Eye (2025)
-
Cost-effectiveness of the anti-vascular endothelial growth factor intravitreal injection and panretinal photocoagulation for patients with proliferative diabetic retinopathy in South Korea
BMC Health Services Research (2023)