Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimodal imaging of dark without pressure lesions in paediatric retinal vasculitis: A cross-sectional study

Abstract

Purpose

To assess relationship between dark without pressure (DWP) retinopathy and retinal vasculitis (RV) in paediatric uveitis patients.

Methods

This is a retrospective cross-sectional study. Wide angle fundus photographs (WAFP), fundus autofluorescence (FAF), and optical coherence tomography (OCT) images were analysed to identify DWP retinopathy. Confluent dark areas on WAFP, hypo-autofluorescence on FAF, and EZ disruption on OCT images were the markers for DWP. DWP retinopathy area was measured using Image-J. The prevalence and characteristics of DWP in RV patients and its association with RV was reported.

Results

Out of 43 paediatric uveitis patients, 26 were diagnosed with RV. Amongst these, DWP was detected in 20 patients (30 eyes) which were analysed. Mean age was 12.8 ± 3.36 years; 40% were female. DWP areas were either diffuse, mid-peripheral or peripheral on WAFP. All 20 patients (30 eyes) showed hypo-autofluorescence on FAF at the same locations as the WAFP. The mean duration of follow-up was 27.2 ( ± 13.7) months. 12 patients (19 eyes) who had DWP at baseline visit had longer duration of uveitis compared to 8 patients (11 eyes) who developed DWP on follow-up visits (p < 0.036). Progression of the retinopathy overtime was analysed in 28 eyes; all eyes showed improvement of RV with therapy. There was a statistically significant relationship between change in vascular leakage and the change in DWP retinopathy area (chi square= 11.67, p = 0.001).

Conclusions

DWP can potentially serve as a biomarker of RV in paediatric uveitis patients and its presence should warrant WAFA evaluation in this patient population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Various configurations of Dark Without Pressure retinopathy and its appearance on multimodal imaging.
Fig. 2: Multimodal Imaging demonstrating evolution of Dark Without Pressure retinopathy in patient with retinal vasculitis.
Fig. 3: Multimodal Imaging showing appearance and improvement in Dark Without Pressure retinopathy after improvement in vascular leakage.

Similar content being viewed by others

Data availability

Data can be made available upon reasonable request after removing appropriate patient identifiers.

References

  1. Abu El-Asrar AM, Herbort CP, Tabbara KF. Retinal vasculitis. Ocul Immunol Inflamm. 2005;13:415–33.

    Article  PubMed  Google Scholar 

  2. Yang P, Zhong Z, Su G, Ye X, Tan S, Li F, et al. Retinal Vasculitis, a Common Manifestation of Idiopathic Pediatric Uveitis?. Retina. 2021;41:610–9.

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal A, Afridi R, Agrawal R, Do DV, Gupta V, Nguyen QD. Multimodal Imaging in Retinal Vasculitis. Ocul Immunol Inflamm. 2017;25:424–33.

    Article  PubMed  Google Scholar 

  4. El-Asrar AM, Herbort CP, Tabbara KF. A clinical approach to the diagnosis of retinal vasculitis. Int Ophthalmol. 2010;30:149–73.

    Article  PubMed  Google Scholar 

  5. Shrestha JK, Khadka D, Lamichhane G, Khanal S. Retinal vasculitis. Nepal J Ophthalmol. 2009;1:66–71.

    Article  CAS  PubMed  Google Scholar 

  6. Diala FGI, McCarthy K, Chen JL, Tsui E. Multimodal imaging in pediatric uveitis. Ther Adv Ophthalmol. 2021;13:25158414211059244.

    PubMed  PubMed Central  Google Scholar 

  7. Nagpal KC, Goldberg MF, Asdourian G, Goldbaum M, Huamonte F. Dark-without-pressure fundus lesions. Br J Ophthalmol. 1975;59:476–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fawzi AA, Nielsen JS, Mateo-Montoya A, Somkijrungroj T, Li HK, Gonzales J, et al. Multimodal imaging of white and dark without pressure fundus lesions. Retina. 2014;34:2376–87.

    Article  PubMed  Google Scholar 

  9. Chang MY, McBeath JB, McCannel CA, McCannel TA. Shadow sign’ in congenital hypertrophy of the retinal pigment epithelium of young myopic pigmented patients. Eye (Lond). 2016;30:160–3.

    Article  CAS  PubMed  Google Scholar 

  10. Condon PI, Serjeant GR. Ocular findings in hemoglobin SC disease in Jamaica. Am J Ophthalmol. 1972;74:921–31.

    Article  CAS  PubMed  Google Scholar 

  11. Condon PI, Serjeant GR. Ocular findings in homozygous sickle cell anemia in Jamaica. Am J Ophthalmol. 1972;73:533–43.

    Article  CAS  PubMed  Google Scholar 

  12. Flores Pimentel MA, Duncan JL, de Alba Campomanes AG, Moore A. Dark without pressure retinal changes in a paediatric age group. Eye. 2021;35:1221–7.

    Article  CAS  PubMed  Google Scholar 

  13. Sherman T, Palileo BM, Adam CR, Abrams GW. Dark without pressure in a case of choroidal osteoma. Retin Cases Brief Rep. 2020;16:593–596.

  14. Steptoe PJ, Momorie F, Fornah AD, Komba SP, Emsley E, Scott JT, et al. Multimodal Imaging and Spatial Analysis of Ebola Retinal Lesions in 14 Survivors of Ebola Virus Disease. JAMA Ophthalmol. 2018;136:689–93.

    Article  PubMed  Google Scholar 

  15. Steptoe PJ, Momorie F, Fornah AD, Komba P, Emsley E, Scott JT, et al. Evolving longitudinal retinal observations in a cohort of survivors of Ebola virus disease. JAMA Ophthalmol. 2020;138:395–403.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lott PW, McKibbin M. Prevalence of dark without pressure and angioid streaks in sickle cell disease. Ophthalmic Surg Lasers Imaging Retin. 2021;52:620–2.

    Article  Google Scholar 

  17. J Steptoe P, Guly CM, Dick AD. Ocular toxoplasmosis associated dark without pressure. Ocul Immunol Inflamm. 2022;31:624–626.

  18. Bittencourt MG, Hassan M, Halim MS, Afridi R, Nguyen NV, Plaza C, et al. Blue light versus green light fundus autofluorescence in normal subjects and in patients with retinochoroidopathy secondary to retinal and uveitic diseases. J Ophthalmic Inflamm Infect. 2019;9:1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cuenca N, Ortuno-Lizaran I, Pinilla I. Cellular Characterization of OCT and Outer Retinal Bands Using Specific Immunohistochemistry Markers and Clinical Implications. Ophthalmology. 2018;125:407–22.

    Article  PubMed  Google Scholar 

  20. Litts KM, Zhang Y, Freund KB, Curcio CA. Optical Coherence Tomography and Histology of Age-Related Macular Degeneration Support Mitochondria as Reflectivity Sources. Retina. 2018;38:445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tychinsky V. The metabolic component of cellular refractivity and its importance for optical cytometry. J Biophoton. 2009;2:494–504.

    Article  CAS  Google Scholar 

  22. Wilson JD, Bigelow CE, Calkins DJ, Foster TH. Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling. Biophys J. 2005;88:2929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mirra S, Marfany G. Mitochondrial Gymnastics in Retinal Cells: A Resilience Mechanism Against Oxidative Stress and Neurodegeneration. Adv Exp Med Biol. 2019;1185:513–7.

    Article  CAS  PubMed  Google Scholar 

  24. Shutt T, Geoffrion M, Milne R, McBride HM. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 2012;13:909–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng JY, Tsai YC, Kadimcherla P, Zhang R, Shi J, Oyler GA, et al. The C-terminal transmembrane domain of Bcl-xL mediates changes in mitochondrial morphology. Biophys J. 2008;94:286–97.

    Article  CAS  PubMed  Google Scholar 

  26. Tychinsky V, Kretushev A, Vyshenskaja T. Mitochondria optical parameters are dependent on their energy state: a new electrooptical effect?. Eur Biophys J. 2004;33:700–5. Dec.

    Article  CAS  PubMed  Google Scholar 

  27. Rutter KM, Hutto RA, Brockerhoff SE. Photoreceptor mitochondria can be transferred and turned over by Müller glia. Invest Ophthalmol Visual Sci. 2022;63:2579 – F0462-2579 – F0462.

  28. Saxena S, Meyer CH, Akduman L. External limiting membrane and ellipsoid zone structural integrity in diabetic macular edema. Eur J Ophthalmol. 2021;32:15–16.1611206721211026106.

    Article  PubMed  Google Scholar 

  29. Sinha S, Saxena S, Prasad S, Mahdi AA, Bhasker SK, Das S, et al. Association of serum levels of anti-myeloperoxidase antibody with retinal photoreceptor ellipsoid zone disruption in diabetic retinopathy. J Diabetes Complications. 2017;31:864–8.

    Article  PubMed  Google Scholar 

  30. Mori Y, Suzuma K, Uji A, Ishihara K, Yoshitake S, Fujimoto M, et al. Restoration of foveal photoreceptors after intravitreal ranibizumab injections for diabetic macular edema. Sci Rep. 2016;6:39161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De S, Saxena S, Kaur A, Mahdi AA, Misra A, Singh M, et al. Sequential restoration of external limiting membrane and ellipsoid zone after intravitreal anti-VEGF therapy in diabetic macular oedema. Eye (Lond). 2021;35:1490–5.

    Article  CAS  PubMed  Google Scholar 

  32. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res. 2005;80:595–606.

    Article  CAS  PubMed  Google Scholar 

  33. Vives-Bauza C, Anand M, Shiraz AK, Magrane J, Gao J, Vollmer-Snarr HR, et al. The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells. J Biol Chem. 2008;283:24770–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ben-Shabat S, Itagaki Y, Jockusch S, Sparrow JR, Turro NJ, Nakanishi K. Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. Angew Chem Int Ed Engl. 2002;41:814–7.

    Article  CAS  PubMed  Google Scholar 

  35. Eskandarpour M, Nunn MA, Weston-Davies W, Calder VL. Immune-mediated retinal vasculitis in posterior uveitis and experimental models: the leukotriene (LT)B4-VEGF Axis. Cells. 2021;10:396.

Download references

Funding

An unrestricted grant from Research to Prevent Blindness, National Eye Institute, P30-Ey026877.

Author information

Authors and Affiliations

Authors

Contributions

Çigdem Yasar: Initial observations and hypothesis development, methodology, data collection, image analysis, data analysis, interpretation, writing the original draft, reviewing, and revisions. Muhammad Hassan: Reviewing and writing the original and revised manuscript, methodology, data interpretation, and analysis. Hashem Ghoraba: Manuscript review and methodology. Christopher Or: Manuscript review and image analysis-software support. Amir Akhavanrezayat: Manuscript review and image preparation. Jonathan Regenold: Manuscript review. Sungwho Park: Manuscript review. Hassan Khojasteh: Manuscript review. Muhammad Sohail Hali: Manuscript review and image analysis. Irmak Karaca: Manuscript review. Brandon Huy Pham: Manuscript review. Gunay Uludag: Manuscript review. Wataru Matsumiya: Manuscript review. Quan Dong Nguyen: Manuscript review.

Corresponding author

Correspondence to Quan Dong Nguyen.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasar, C., Hassan, M., Ghoraba, H. et al. Multimodal imaging of dark without pressure lesions in paediatric retinal vasculitis: A cross-sectional study. Eye 39, 2645–2654 (2025). https://doi.org/10.1038/s41433-025-03882-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-025-03882-3

Search

Quick links