Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

AAV vector engineering for human aorta transduction: becoming a smooth operator

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Zhuge Y, Zhang J, Qian F, Wen Z, Niu C, Xu K, et al. Role of smooth muscle cells in Cardiovascular Disease. Int J Biol Sci. 2020;16:2741–51.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Khachigian LM, Varcoe RL, Suoranta T, Laham-Karam N, Yla-Herttuala S. Gene therapeutic strategies for peripheral artery disease and new opportunities provided by adeno-associated virus vectors. Arterioscler Thromb Vasc Biol. 2023;43:836–51.

    Article  CAS  PubMed  Google Scholar 

  3. Raghavan A, Pirruccello JP, Ellinor PT, Lindsay ME. Using Genomics to Identify Novel Therapeutic Targets for Aortic Disease. Arterioscler Thromb Vasc Biol. 2024;44:334–51.

    Article  CAS  PubMed  Google Scholar 

  4. Yang G, Khan A, Liang W, Xiong Z, Stegbauer J. Aortic aneurysm: pathophysiology and therapeutic options. MedComm (2020). 2024;5:e703.

    Article  CAS  PubMed  Google Scholar 

  5. Schroder LC, Huttermann L, Kliesow Remes A, Voran JC, Hille S, Sommer W, et al. AAV library screening identifies novel vector for efficient transduction of human aorta. Gene Ther. 2024. https://doi.org/10.1038/s41434-024-00511-8. ahead of print

    Article  PubMed  PubMed Central  Google Scholar 

  6. Destro F, Wu W, Srinivasan P, Joseph J, Bal V, Neufeld C, et al. The state of technological advancement to address challenges in the manufacture of rAAV gene therapies. Biotechnol Adv. 2024;76:108433.

    Article  CAS  PubMed  Google Scholar 

  7. Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther. 2024;9:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122:23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gruchala M, Bhardwaj S, Pajusola K, Roy H, Rissanen TT, Kokina I, et al. Gene transfer into rabbit arteries with adeno-associated virus and adenovirus vectors. J Gene Med. 2004;6:545–54.

    Article  CAS  PubMed  Google Scholar 

  10. Lompre AM, Hadri L, Merlet E, Keuylian Z, Mougenot N, Karakikes I, et al. Efficient transduction of vascular smooth muscle cells with a translational AAV2.5 vector: a new perspective for in-stent restenosis gene therapy. Gene Ther. 2013;20:901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Korbelin J, Dogbevia G, Michelfelder S, Ridder DA, Hunger A, Wenzel J, et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol Med. 2016;8:609–25.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Korbelin J, Sieber T, Michelfelder S, Lunding L, Spies E, Hunger A, et al. Pulmonary targeting of adeno-associated viral vectors by next-generation sequencing-guided screening of random capsid displayed peptide libraries. Mol Ther. 2016;24:1050–61.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Varadi K, Michelfelder S, Korff T, Hecker M, Trepel M, Katus HA, et al. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene Ther. 2012;19:800–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez SH, Hale JF, McCarthy S, Cardenas CL, Dona K, Hanlon KS, et al. An Engineered Adeno-Associated Virus Capsid Mediates Efficient Transduction of Pericytes and Smooth Muscle Cells of the Brain Vasculature. Hum Gene Ther. 2023;34:682–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Remes A, Basha DI, Puehler T, Borowski C, Hille S, Kummer L, et al. Alginate hydrogel polymers enable efficient delivery of a vascular-targeted AAV vector into aortic tissue. Mol Ther Methods Clin Dev. 2021;21:83–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hooshdaran B, Pressly BB, Alferiev IS, Smith JD, Zoltick PW, Tschabrunn CM, et al. Stent-based delivery of AAV2 vectors encoding oxidation-resistant apoA1. Sci Rep. 2022;12:5464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murzi M, Farneti PA, Rizza A, Di Sibio S, Palmieri C, Solinas M. Hybrid approach in acute and chronic aortic disease. Medicina. 2021;58:49.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R, et al. microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther. 2011;18:199–209.

    Article  CAS  PubMed  Google Scholar 

  19. Qiao C, Yuan Z, Li J, He B, Zheng H, Mayer C, et al. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Ther. 2011;18:403–10.

    Article  CAS  PubMed  Google Scholar 

  20. Zinn E, Unzu C, Schmit PF, Turunen HT, Zabaleta N, Sanmiguel J, et al. Ancestral library identifies conserved reprogrammable liver motif on AAV capsid. Cell Rep Med. 2022;3:100803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cabanes-Creus M, Navarro RG, Liao SHY, Baltazar G, Drouyer M, Zhu E, et al. Single amino acid insertion allows functional transduction of murine hepatocytes with human liver tropic AAV capsids. Mol Ther Methods Clin Dev. 2021;21:607–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoffman JA, Denton N, Sims JJ, Meggersee R, Zhang Z, Olagbegi K, et al. Modulation of AAV9 Galactose binding yields novel gene therapy vectors and predicts cross-species differences in glycan avidity. Hum Gene Ther. 2024;35:734–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.R. and D.G. jointly wrote this article.

Corresponding author

Correspondence to Dirk Grimm.

Ethics declarations

Ethics statement

Ethics approval was not needed for this work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapti, K., Grimm, D. AAV vector engineering for human aorta transduction: becoming a smooth operator. Gene Ther 32, 331–332 (2025). https://doi.org/10.1038/s41434-025-00526-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41434-025-00526-9

Search

Quick links