Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Desert landscape features influencing the microgeographic genetic structure of Nelson’s pocket mouse Chaetodipus nelsoni

Abstract

Elucidating the factors that drive the genetic patterns of natural populations is key in evolutionary biology, ecology and conservation. Hence, it is crucial to understand the role that environmental features play in species genetic diversity and structure. Landscape genetics measures functional connectivity and evaluates the effects of landscape composition, configuration, and heterogeneity on microevolutionary processes. Deserts constitute one of the world’s most widespread biomes and exhibit a striking heterogeneity of microhabitats, yet few landscape genetics studies have been performed with rodents in deserts. We evaluated the relationship between landscape and functional connectivity, at a microgeographic scale, of the Nelson’s pocket mouse Chaetodipus nelsoni in the Mapimí Biosphere Reserve (Chihuahuan desert). We used single-nucleotide polymorphisms and characterized the landscape based on on-site environmental data and from Landsat satellite images. We identified two distinct genetic clusters shaped by elevation, vegetation and soil. High elevation group showed higher connectivity in the elevated zones (1250–1350 m), with scarce vegetation and predominantly rocky soils; whereas that of Low elevation group was at <1200 m, with denser vegetation and sandy soils. These genetic patterns are likely associated with the species’ locomotion type, feeding strategy and building of burrows. Interestingly, we also identified morphological differences, where hind foot size was significantly smaller in individuals from High elevation compared to Low elevation, suggesting the possibility of ecomorphs associated with habitat differences and potential local adaptation processes, which should be explored further. These findings improve our understanding of the genetics and ecology of C. nelsoni and other desert rodents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of the study site at the Mapimí Biosphere Reserve (MBR), Mexico for the Nelson’s pocket mouse.
Fig. 2: Raster layers of the four landscape variables at the study site and sampling localities of Chaetodipus nelsoni.
Fig. 3: Morphological metrics of Chaetodipus nelsoni at the study site in the Mapimí Biosphere Reserve, Mexico.
Fig. 4: Genetic structure of Chaetodipus nelsoni at the study site in the Mapimí Biosphere Reserve, Mexico.
Fig. 5: Surface optimization and response curves for Chaetodipus nelsoni at the study site in the Mapimí Biosphere Reserve, Mexico.
Fig. 6: Landscape genetics patterns for Chaetodipus nelsoni.

Similar content being viewed by others

Data availability

Input files for population genetic analyses (raw and filtered genomic data files) have been made available on Dryad (https://doi.org/10.5061/dryad.qbzkh18sz).

References

  • Adamack AT, Gruber B (2014) PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387

    Article  Google Scholar 

  • Aguilera-Miller E, Álvarez-Castañeda ST, Murphy R (2018) Matrilineal genealogies suggest a very low dispersal in desert rodent females. J Arid Environ 152:28–36

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Anderson CD, Bryan KE, Marie JF, Holderegger R, James PM, Rosenberg MS et al. (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

    Article  PubMed  Google Scholar 

  • Bates DM, Maechler M, Bolker BM, Walker S (2014) Linear mixed-effects models using Eigen and S4. R package version 1.1-6. Retrieved from http://CRAN.R-project.org/package=lme4

  • Balkenhol N, Cushman S, Storfer A, Waits L (2016) Landscape genetics: Concepts, methods and applications. John Wiley & Sons Ltd, Chichester, UK

    Google Scholar 

  • Best TL (1994) Chaetodipus nelsoni. Mamm Species 484:1–6

    Google Scholar 

  • Best TL, Intress C, Shull KD (1988) Mound structure in three taxa of Mexican kangaroo rats (Dipodomys spectabilis cratodon, D. s. zygomaticus and D. nelsoni). Am Midl Naturalist 119:216–220

    Article  Google Scholar 

  • Bolker B (2008) Ecological models and data in R. Princeton University Press, Princeton

    Book  Google Scholar 

  • Borja-Martínez G, Tapia-Flores D, Shafer ABA, Vázquez-Domínguez E (2022) Highland forest’s environmental complexity drives landscape genomics and connectivity of the rodent Peromyscus melanotis. Landsc Ecol 37:1653–1671

    Article  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza L (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Heske EJ (1990a) Temporal changes in a Chihuahuan desert rodent community. Oikos 59:290–302

    Article  Google Scholar 

  • Brown JH, Heske EJ (1990b) Control of a desert‐grassland transition by a keystone rodent guild. Science 250:1705–1707

    Article  CAS  PubMed  Google Scholar 

  • Busch JD, Waser PM, DeWoody JA (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Mol Ecol 16:2450–2462

    Article  CAS  PubMed  Google Scholar 

  • Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856

    Article  PubMed  Google Scholar 

  • Ceballos G Oliva G (2005) Los mamíferos silvestres de México. Conabio/Fondo de Cultura Económica, México

  • Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: Estimating gene flow with distance. J Agric Biol Environ Stat 7:361–372

    Article  Google Scholar 

  • CONANP (Comisión Nacional de Áreas Naturales Protegidas) (2006) Programa de conservación y manejo, Reserva de La Biosfera Mapimí. Conanp, México

  • Cosentino BJ, Schooley RL, Bestelmeyer BT, McCarthy AJ, Sierzega K (2015) Rapid genetic restoration of a keystone species exhibiting delayed demographic response. Mol Ecol 24:6120–6133

    Article  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Naturalist 168:486–499

    Article  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson FS (1998) Social structure and gene dynamics in mammals. J Mamm 79:667–670

    Google Scholar 

  • Dyer RJ (2014) gstudio. An R package for the spatial analysis of population genetic data. https://github.com/dyerlab/gstudio

  • Earl DA, vonHoldt BM (2012) Structure Harvester: A website and program for visualizing structure output and implementing the evanno method. Conserv Genet Res 4:1–3

    Article  Google Scholar 

  • Eaton DAR, Overcast I (2020) ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36:2592–2594

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol 34:487–515

    Article  Google Scholar 

  • Flores-Manzanero A, Vázquez-Domínguez E (2019) Landscape genetics of mammals in American ecosystems. Therya 10:381–393

    Article  Google Scholar 

  • Flores-Manzanero A, Luna-Bárcenas MA, Dyer RJ, Vázquez-Domínguez E (2019) Functional connectivity and home range inferred at a microgeographic landscape genetics scale in a desert‐dwelling rodent. Ecol Evol 9:437–453

    Article  PubMed  Google Scholar 

  • Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143:1919–1927

    Article  Google Scholar 

  • Frichot E, François O (2015) LEA: An R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929

    Article  Google Scholar 

  • Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 4:973–983

    Article  Google Scholar 

  • Foll M, Gaggiotti OE (2008) Genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrido-Garduño T, Téllez-Valdés O, Manel S, Vázquez-Domínguez E (2016) Role of habitat heterogeneity and landscape connectivity in shaping gene flow and spatial population structure of a dominant rodent species in a tropical dry forest. J Zool 298:293–302

    Article  Google Scholar 

  • Garrido-Garduño T, Vázquez-Domínguez E, Dávila-Aranda P, Lira-Saade R, Arenas-Navarro M, Téllez-Valdés O (2022) Defining environmentally heterogeneous sites when faced with conservation urgency and scarce in situ data. Rev Mex Biodiv 93:e934132

    Article  Google Scholar 

  • Geluso KN, Geluso K (2015) Distribution and natural history of Nelson’s pocket mouse (Chaetodipus nelsoni) in the Guadalupe mountains in southeastern New Mexico. Occasional Pap Mus Tex Tech Univ 332:1–20

    Google Scholar 

  • González ES (1983) La Vegetación de Durango. Serie: Cuadernos de Investigación Tecnológica, Durango, México

  • Goudet J (2005) Hierfstat, a package for R to compute and test variance components and F-statistics. Mol Ecol Notes 5:184–186

    Article  Google Scholar 

  • Grünberger O (2004) Características esenciales de la Reserva de la Biosfera. In: Grünberger O, Reyes-Gómez V.M, Janeau JL (eds) Las playas del desierto chihuahuense (parte mexicana): Influencia de las sales en ambiente árido y semiárido. Institut de Recherche pour le Développement. Instituto de Ecología, A.C., México, pp 41–55

  • Gutiérrez-Rodríguez J, Gonçalves J, Civantos E, Martínez-Solano I (2017) Comparative landscape genetics of pond-breeding amphibians in Mediterranean temporal wetlands: The positive role of structural heterogeneity in promoting gene flow. Mol Ecol 26:5407–5420

    Article  PubMed  Google Scholar 

  • Hall JK, McGowan CP, Lin DC (2022) Comparison between the kinematics for kangaroo rat hopping on a solid versus sand surface. R Soc Open Sci 9:211491

    Article  PubMed  PubMed Central  Google Scholar 

  • Hettmansperger TP, McKean JW (2011) Robust nonparametric statistical methods. 2nd edition. CRC press, Florida, USA

  • Hoban S, Bruford M, D’urban JJ, Lopes-Fernandes M, Heuertz M, Hohenlohe PA et al. (2020) Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol Conserv 248:108654

    Article  Google Scholar 

  • Hollander M, Wolfe DA (1973) Nonparametric statistical methods. John Wiley & Sons, Inc, USA

    Google Scholar 

  • Hoogland JL (2002) Sexual dimorphism of prairie dogs. J Mamm 84:1254–1266

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) Adegenet: An R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 4:281

    Article  Google Scholar 

  • Kivimäki I, Shimbo M, Saerens M (2014) Developments in the theory of randomized shortest paths with a comparison of graph node distances. Phys A: Stat Mech its Appl 393:600–616

    Article  Google Scholar 

  • Kloke JD, McKean JW (2012) Rfit: Rank-based estimation for linear models. R J 4:57–64

    Article  Google Scholar 

  • Kocher D, Parshad VR (2003) Structural and functional analysis of burrows of three rodent species in wheat fields in sandy and loamy soils in Punjab (India). Mammalia 67:603–605

    Article  Google Scholar 

  • LaPoint S, Balkenhol N, Hale J, Sadler J, Van der Ree R (2015) Ecological connectivity research in urban areas. Funct Ecol 29:868–878

    Article  Google Scholar 

  • Luna-Bárcenas MA (2023) Asociación de loci con factores ambientales en la estructura genómica de Dipodomys nelsoni. Dissertation, Instituto de Ecología, UNAM

  • Luu K, Bazin E, Blum GB (2017) Pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol Ecol Res 17:67–77

    Article  CAS  Google Scholar 

  • Ma J, Amos CI (2012) Principal components analysis of population admixture. PLoS ONE 7:e40115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Marrotte RR, Gonzalez A, Millien V (2014) Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal. Mol Ecol 23:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Matson JO, Baker RH (1986) Mammals of Zacatecas. Spec Publ Mus, Tex Tech Univ 24:1–88

    Google Scholar 

  • Mills J, Yates TL, Childs JE, Parmenter RR, Ksiazek TG, Rollin PE, Peters CJ (1995) Guidelines for working with rodents potentially infected with hantavirus. J Mamm 76:716–722

    Article  Google Scholar 

  • Mimura M, Yakahara T, Faith DP, Vázquez-Domínguez E, Colautti RI, Araki H et al. (2017) Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol Appl 10:121–139

    Article  PubMed  Google Scholar 

  • Modi WS (2003) Morphological, chromosomal, and molecular evolution are uncoupled in pocket mice. Cytogenet Genome Res 103:150–154

    Article  CAS  PubMed  Google Scholar 

  • Montaña C (1988) Estudio integrado de los recursos de vegetación, suelo y agua en la Reserva de La Biósfera de Mapimí. Instituto de Ecología, A.C., México

  • Mullins J, Ascensão F, Simões L, Andrade L, Santos-Reis M, Fernandes C (2015) Evaluating connectivity between Natura 2000 sites within the montado agroforestry system: a case study using landscape genetics of the wood mouse (Apodemus sylvaticus). Landsc Ecol 30:609–623

    Article  Google Scholar 

  • Neiswenter SA, Hafner DJ, Light JE, Cepeda GD, Kinzer KC, Alexander LF, Riddle BR (2019) Phylogeography and taxonomic revision of Nelson’s pocket mouse (Chaetodipus nelsoni). J Mamm 100:1847–1864

    Article  Google Scholar 

  • Nueda MJ, Gandía C, Molina MD (2022) LPDA: A new classification method based on linear programming. PloS ONE 17(7):e0270403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patton JL (1970) Karyotypes of five species of pocket mouse, Perognathus (Rodentia: Heteromyidae), and a summary of chromosome data for the genus. Mamm Chromosome Newsl 11:3–8

    Google Scholar 

  • Patton JL (2005) Family Heteromyidae. In: Wilson DE, Reeder DM (eds) Mammal species of the World: A taxonomic and geographic reference, 3rd edition. Johns Hopkins University Press, USA, pp 844-858

  • Patton JL, Sherwood SW, Yang SY (1981) Biochemical systematics of chaetodipine pocket mice, genus Perognathus. J Mamm 62:477–492

    Article  Google Scholar 

  • Peterman WE (2018) ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9:1638–1647

    Article  Google Scholar 

  • Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23:2402–2413

    Article  PubMed  Google Scholar 

  • Petkova D, Novembre J, Stephens M (2016) Visualizing spatial population structure with estimated effective migration surfaces. Nat Genet 48:94–100

    Article  CAS  PubMed  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: Convergence diagnosis and output analysis for MCMC. R N. 6:7–11

    Google Scholar 

  • Primack RB (2014) Essentials of conservation biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R foundation for statistical computing. https://doi.org/10.1007/978-3-540-74686-7

  • Randall JA (1993) Behavioural adaptations of desert rodents (Heteromyidae). Anim Behav 45:263–287

    Article  Google Scholar 

  • Reding DM, Cushman SA, Gosselink TE, Clark WR (2013) Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus). Landsc Ecol 28:471–486

    Article  Google Scholar 

  • Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, Graf R et al. (2016) Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol Ecol 25:5907–5924

    Article  PubMed  Google Scholar 

  • Romero-Báez Ó, Murphy M, Díaz de la Vega-Pérez AH, Vázquez-Domínguez E (2024) Environmental and anthropogenic factors mediating the functional connectivity of the mesquite lizard along the eastern Trans-Mexican Volcanic Belt. Mol Ecol 33:e17469

    Article  PubMed  Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Eco Evol Syst 38:231–253

    Article  Google Scholar 

  • Royston JP (1982) An extension of Shapiro and Wilk’s w tests for normality to large samples. Appl Stat 31:115–124

    Article  Google Scholar 

  • Ruiz‐Lopez MJ, Barell C, Rovero F, Roos C, Peterman WE, Ting N (2016) A novel landscape genetic approach demonstrates the effects of human disturbance on the Udzungwa red colobus monkey (Procolobus gordonorum). Heredity 116:167–176

    Article  PubMed  Google Scholar 

  • Russo IR, Sole CL, Barbato M, Von Bramann U, Bruford MW (2016) Landscape determinants of fine-scale genetic structure of a small rodent in a heterogeneous landscape (Hluhluwe-IMfolozi Park, South Africa). Sc Rep. 6(29168):1–14

    CAS  Google Scholar 

  • Schoville S, Bonin A, Francois O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Syst 43:23–43

    Article  Google Scholar 

  • Schwartz A, Armitage KB (1980) Genetic variation in social mammals: the marmot model. Science 207:665–667

    Article  CAS  PubMed  Google Scholar 

  • Scrucca L (2013) GA: A package for genetic algorithms in R. J Stat Softw 53:1–37

    Article  Google Scholar 

  • Serrano V (1987) Las comunidades de roedores desertícolas del Bolsón de Mapimí. Acta Zool Mex 1:1–22

    Google Scholar 

  • Shirk AJ, Landguth EL, Cushman SA (2017) A comparison of individual-based genetic distance metrics for landscape genetics. Mol Ecol Res 17:1308–1317

    Article  CAS  Google Scholar 

  • Silleos G, Thomas A, Ioannis G, Konstantinos K (2006) Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int 21:21–28

    Article  Google Scholar 

  • Sikes RS (2016) Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mamm 97:663–688

    Article  Google Scholar 

  • Spear SF, Cushman SA, McRae H (2015) Resistance surface modeling in landscape genetics. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP (eds) Landscape Genetics: Concepts, Methods, Applications. John Wiley & Sons Ltd, Chichester, UK, pp. 129-148

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: Where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Van Etten J (2017) R package Gdistance: Distances and routes on geo-graphical grids. J Stat Softw 76:1–21

    Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: Least‐cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023

    Article  PubMed  Google Scholar 

  • VanStaaden JM (1994) Suricata suricatta. Mamm Species 483:1–8

    Article  Google Scholar 

  • Vaughan TA, Ryan JA, Czaplewski NJ (2000) Mammalogy, fourth ed. Harcourt College Publishers, USA

  • Verde-Arregoitia LD, Fisher DO, Schweizer M (2017) Morphology captures diet and locomotor types in rodents. R Soc Open Sci 4:2054–5703

    Article  Google Scholar 

  • Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662

    Article  PubMed  Google Scholar 

  • White JG, Sparrius J, Robinson T, Hale S, Lupone L, Healey T et al. (2022) Can NDVI identify drought refugia for mammals and birds in mesic landscapes? Sci Total Environ 851:158318

    Article  CAS  PubMed  Google Scholar 

  • Whitford W (2002) Ecology of desert systems. Academic Press, California

    Google Scholar 

  • Westphal MF, Noble T, Butterfield HS, Lortie CJ (2018) A test of desert shrub facilitation via radiotelemetric monitoring of a diurnal lizard. Ecol Evol 8:12153–12162

    Article  PubMed  PubMed Central  Google Scholar 

  • WWF (World Wildlife Fund) (2019) Deserts and xeric shrublands. Recovered from https://www.worldwildlife.org/biomes/deserts-and-xeric-shrublands on 21 May 2019

Download references

Acknowledgements

We are grateful with L. Eguiarte-Fruns and R. López Wilchis for discussions throughout the entire project, with R. Medina and Ó. Romero-Báez for assistance with genomic analyses, and with J. Searle and the people from his laboratory for their help and friendship during GP-S scientific visit. We deeply thank the Instituto de Ecología A.C. and Mr. Francisco Herrera and Mrs. Ernestina Rojas for their devoted support at the Mapimí Field Station. Our gratitude with A. Flores-Manzanero, T. Garrido-Garduño, M. Suárez-Atilano and M. Luna-Bárcenas for their enthusiastic help during fieldwork, S. Castañeda‐Rico and T. Garrido‐Garduño for molecular advice, and A. González and M. Baltazar for computational support. We truly thank the anonymous reviewers which helped us improve the manuscript. GP-S had a scholarship provided by CONACyT (becario 661803) for her Master’s in the Programa de Maestría en Ciencias Biológicas de la Universidad Nacional Autónoma de México (UNAM) and financial support from Programa de Estudios de Posgrado (PAEP 2017 and 2018). The project had financial support from Programa de Apoyo a Proyectos de Investigación e Innovación Tenconlógica granted to EV-D (research grant Papiit IN201716). EV-D received financial support for a sabbatical at the Estación Biológica de Doñana-CSIC from Dirección General de Asuntos del Personal Académico (DGAPA, UNAM; PASPA No. 067/2023) and Consejo Nacional de Humanidades, Ciencias y Tecnologias (CONAHCyT).

Author information

Authors and Affiliations

Authors

Contributions

EV-D conceived the original idea, designed the research and obtained the financial support. EV-D and GP-S conducted the fieldwork. GP-S performed the laboratory work. EV-D and GP-S performed the analyses. EV-D wrote the manuscript and GP-S agreed on the final version and submission of the manuscript.

Corresponding author

Correspondence to Ella Vázquez-Domínguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Research ethics statement

Procedures were conducted in strict accordance with the guidelines of the American Society of Mammalogists for use of wild mammal species (Sikes 2016) and with the corresponding collecting permits (FAUT 0168). No institutional ethical approval was required given no experimental procedures or killing of individuals were performed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Giorgio Bertorelle.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda-Sánchez, G., Vázquez-Domínguez, E. Desert landscape features influencing the microgeographic genetic structure of Nelson’s pocket mouse Chaetodipus nelsoni. Heredity 134, 21–32 (2025). https://doi.org/10.1038/s41437-024-00732-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41437-024-00732-y

This article is cited by

Search

Quick links