Fig. 2: The synchronization error E (top) and the synchronization energy \({{{\mathcal{E}}}}\) (bottom) versus the average coupling strength \(\bar{\sigma }\). | Nature Communications

Fig. 2: The synchronization error E (top) and the synchronization energy \({{{\mathcal{E}}}}\) (bottom) versus the average coupling strength \(\bar{\sigma }\).

From: The efficiency of synchronization dynamics and the role of network syncreactivity

Fig. 2

(a) Shows the case of Lorenz systems. The parameters in Eq. (7) for σ = σ(t) are β = 0.5, and γ = 0.16. (b) Shows the case of Rössler oscillators. The parameters for σ = σ(t) in Eqs. (7) and (8) are β = 0.2, and γ = α = 0.01. For \(0\le \bar{\sigma } \, < \, 0.3\), we use Eq. (7), and for \(0.3\le \bar{\sigma }\le 3\), we use Eq. (8). The data for both panels are averaged over 20 realizations initiated from randomly chosen initial conditions. The shaded backgrounds show the standard deviation of the plotted data.

Back to article page