Table 1 Average classification accuracies across three species of arborescent palms for assessing the robustness of the seven different approaches for model training and testing

From: Effective integration of drone technology for mapping and managing palm species in the Peruvian Amazon

Model

Training

Testing

Differences over*

Precision

Recall

F1-score

Images from

Year

No. of UAV mosaics

No. of tiles used

Mosaic from

Year

No. of UAV mosaics

1

Veinte de Enero site

2017

4

764

Veinte de Enero site

2017

1

ic

0,63

0,60

0,61

2

All sites

2017 + 2018

26

10505

Nueva York & 2 de Mayo de Muyuy

2019

2

ic, fc, sr

0,59

0,60

0,59

3

All sites

2018 + 2019

33

10420

Veinte de Enero & Parinari

2017

2

ic, fc, sr

0,86

0,46

0,45

4

All sites

2017 + 2019

34

11651

Jenaro Herrera & Iquitos

2018

2

ic, fc, sr

0,77

0,54

0,56

5

Around the National Reserve Allpahuayo Mishana

All years

13

5157

Around the National Reserve Pacaya - Samiria

2019

2

ic, sp, fl, gl

0,86

0,59

0,67

6

Within the Pastaza Marañon (PM) Foreland Basin

All years

79

27992

Nueva Jerusalen site

2019

2

ic, sp, fl, gl, td

0,72

0,77

0,72

Final

All the training sites from the Loreto region.

All years

81

29902

All the sites in Madre de Dios region

2019-2022

4

ic, sp, fl, gl, td

0,88

0,67

0,74

  1. *ic iIllumination conditions, fc floristic composition, sr spatial resolution, gl geographical location, td amount of training data.
  2. Source data are provided as a Source Data file.