Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Exponential crystallization in corals
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Exponential crystallization in corals

  • Zoë Rechav  ORCID: orcid.org/0000-0002-7653-89881,
  • Eric Tambutté  ORCID: orcid.org/0000-0002-1419-37852,
  • Isabelle M. LeCloux  ORCID: orcid.org/0009-0008-8762-791X1,
  • Samantha Anglemyer  ORCID: orcid.org/0009-0003-2681-38511,
  • Natalie E. Beltz  ORCID: orcid.org/0009-0002-2527-55641,
  • Nicolas A. Chou  ORCID: orcid.org/0009-0008-8620-523X1,
  • Brynne E. Dixson-Kruijf1,
  • Johannes Domagk  ORCID: orcid.org/0009-0005-8945-40611,
  • Anders M. Larson1,
  • Sylvia W. Lewis  ORCID: orcid.org/0009-0007-0748-91351,
  • Rhita Rich  ORCID: orcid.org/0009-0008-8936-60551,
  • Lateef O. Saheed  ORCID: orcid.org/0009-0007-2645-23701,
  • James L. Schwenk1,
  • Jaden S. Sengkhammee  ORCID: orcid.org/0009-0003-1316-08471,
  • Christian A. Waltenberg1,
  • Jianfeng Ye  ORCID: orcid.org/0009-0004-5837-15301,
  • Barat Q. Achinuq3,
  • Alexander A. Venn  ORCID: orcid.org/0000-0003-0544-08842,
  • Sylvie Tambutté  ORCID: orcid.org/0000-0002-0505-63752 &
  • …
  • Pupa U. P. A. Gilbert  ORCID: orcid.org/0000-0002-0139-20991,4,5 

Nature Communications , Article number:  (2026) Cite this article

  • 402 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biomineralization
  • Carbon cycle

Abstract

Corals form their reef-building aragonite (CaCO3) skeletons via transient precursor phases yet understanding of the dynamics of these early-stage transformations remains incomplete. Using time-independent myriad mapping (MM) at 50 nm resolution, we map five mineral phases near the skeleton surface of Stylophora pistillata corals grown in varying seawater pH. All precursors, crystalline and amorphous, exhibit a consistent exponential decay from the growth front, with a shared decay length of 0.7 ± 0.1 μm, independent of time, phase, or pH. This spatial decay, paired with the constant growth rate of the skeleton, reveals a decay time of 5.1 ± 0.5 minutes. The dominant precursor is not amorphous but crystalline: calcium carbonate hemihydrate (CCHH, CaCO₃·½H₂O). These results suggest that exponential crystallization kinetics govern coral biomineralization and may be a widespread feature in biogenic, geologic, and synthetic systems—traceable long after initial mineral deposition.

Similar content being viewed by others

Myriad Mapping of nanoscale minerals reveals calcium carbonate hemihydrate in forming nacre and coral biominerals

Article Open access 28 February 2024

Rapid isotopic exchange in mineralogically unaltered coral skeletons

Article Open access 01 July 2025

Newly deceased Caribbean reef-building corals experience rapid carbonate loss and colonization by endolithic organisms

Article Open access 12 September 2023

Data availability

The precursor proportions generated in this work from MMs and Stylophora pistillata coral nubbin growth data have been deposited in the data.xlsx file available on Zenodo and GitHub57 with https://doi.org/10.5281/zenodo.18175786 and are source data to reproduce Figs. 2C, D, 3B, 4B, C and 5B, Supplementary Figs. 2 and 4–6, Table 1, and Supplementary Tables 2–4. The data used to produce MMs is available with no restricted access and can be obtained by contacting the corresponding author of this work at any period after publication of this work.

Code availability

GG Macros v1.0.0, Igor Pro 8, MATLAB R2023b, Python 3.11.3, Numpy 1.24.3, Pandas 2.0.1, Scipy 1.10.1, and Matplotlib 3.7.1 are used in available code, demsontrations, and software. Interactive demonstrations of the PPD code, performing exponential fits, plotting data, and the kinetic model, are publicly accessible at the following Zenodo57 and GitHub with https://doi.org/10.5281/zenodo.18175786. From available code demonstrations, all results presented in this work can be reproduced by any interested readers. Additionally, the software to produce MMs from PEEM data is available on Zenodo48 and GitHub with https://doi.org/10.5281/zenodo.17314121.

References

  1. Cohen, A. L. McConnaughey TA. Geochemical perspectives on coral mineralization. Rev. Miner. Geochem 54, 151–187 (2003).

    Google Scholar 

  2. Von Euw, S. et al. Biological control of aragonite formation in stony corals. Science 356, 933–938 (2017).

    Google Scholar 

  3. Mass, T. et al. Amorphous calcium carbonate particles form coral skeletons. Proc. Natl. Acad. Sci. USA 114, E7670–E7678 (2017).

    Google Scholar 

  4. Schmidt, C. A. et al. Myriad Mapping of nanoscale minerals reveals calcium carbonate hemihydrate in forming nacre and coral biominerals. Nat. Commun. 15, 1812 (2024).

  5. Gladfelter, E. H. Skeletal Development in Acropora-Cervicornis .3. A comparison of monthly rates of linear extension and calcium-carbonate accretion measured over a year. Coral Reefs 3, 51–57 (1984).

    Google Scholar 

  6. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Google Scholar 

  7. Sun, C. Y. et al. From particle attachment to space-filling coral skeletons. Proc. Natl. Acad. Sci. USA 117, 30159–30170 (2020).

    Google Scholar 

  8. Zou, Z. Y. et al. A hydrated crystalline calcium carbonate phase: calcium carbonate hemihydrate. Science 363, 396 (2019).

    Google Scholar 

  9. Tambutté, S. et al. Coral biomineralization: from the gene to the environment. J. Exp. Mar. Biol. Ecol. 408, 58–78 (2011).

    Google Scholar 

  10. Gilbert, P. et al. Biomineralization: Integrating mechanism and evolutionary history. Sci. Adv. 8, eabl9653 (2022).

  11. De Stasio, G. et al. MEPHISTO: performance tests of a novel synchrotron imaging photoelectron spectromicroscope. Rev. Sci. Instrum. 69, 2062–2066 (1998).

    Google Scholar 

  12. Scholl, A., Ohldag, H., Nolting, F., Stöhr, J. & Padmore, H. A. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures (invited). Rev. Sci. Instrum. 73, 1362–1366 (2002).

    Google Scholar 

  13. De Stasio, G. et al. MEPHISTO spectromicroscope reaches 20 nm lateral resolution. Rev. Sci. Instrum. 70, 1740–1742 (1999).

    Google Scholar 

  14. Venn, A. A. et al. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc. Natl. Acad. Sci. USA 110, 1634–1639 (2013).

    Google Scholar 

  15. Parasassi, T., Sapora, O., Giusti, A. M., De Stasio, G. & Ravagnan, G. Alterations in erythrocyte-membrane lipids induced by low-doses of ionizing-radiation as revealed by 1,6-diphenyl-1,3,5-hexatriene fluorescence lifetime. Int. J. Rad. Biol. 59, 59–69 (1991).

    Google Scholar 

  16. Scucchia, F., Sauer, K., Fara, S., Mass, T. & Zaslansky, P. 4D insights into coral biomineralization: effects of ocean acidification on the early skeleton development of a stony coral. Adv. Sci. 12, e73149 (2025).

    Google Scholar 

  17. Benzerara, K. et al. Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy. Ultramicroscopy 111, 1268–1275 (2011).

    Google Scholar 

  18. Malik, A. et al. Molecular and skeletal fingerprints of scleractinian coral biomineralization: from the sea surface to mesophotic depths. Acta Biomater. 120, 263–276 (2021).

    Google Scholar 

  19. Stolarski, J. Three-dimensional micro-and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol. Pol. 48, 497–530 (2003).

  20. Meibom, A. et al. Vital effects in coral skeletal composition display strict three-dimensional control. Geophys. Res. Lett. 33, L11608 (2006).

  21. Hobbie, R. K. & Roth, B. J. Exponential growth and decay. In Intermediate Physics for Medicine and Biology (eds Hobbie R. K. & Roth, B. J.) 31–47 (Springer International Publishing, 2007).

  22. Venn, A. A. et al. Effects of light and darkness on pH regulation in three coral species exposed to seawater acidification. Sci. Rep. 9, 2201 (2019).

  23. Bots, P., Benning, L. G., Rodriguez-Blanco, J.-D., Roncal-Herrero, T. & Shaw, S. Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Des. 12, 3806–3814 (2012).

    Google Scholar 

  24. Gong, Y. U. T. et al. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA 109, 6088–6093 (2012).

    Google Scholar 

  25. Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA 107, 16438–16443 (2010).

    Google Scholar 

  26. Rodriguez-Blanco, J. D., Shaw, S., Bots, P., Roncal-Herrero, T. & Benning, L. G. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate. J. Alloy. Compd. 536, S477–S479 (2012).

    Google Scholar 

  27. Cohen, A. L. & Holcomb, M. Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22, 118–127 (2009).

    Google Scholar 

  28. Cohen, A. L., McCorkle, D. C., de Putron, S., Gaetani, G. A. & Rose, K. A. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification. Geochem. Geophys. Geosys. 10, Q07005 (2009).

  29. Godwin, H. Half-life of radiocarbon. Nature 195, 984–984 (1962).

    Google Scholar 

  30. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Google Scholar 

  31. Politi, Y. et al. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc. Natl. Acad. Sci. USA 105, 17362–17366 (2008).

    Google Scholar 

  32. Killian, C. E. et al. Mechanism of calcite co-orientation in the sea urchin tooth. J. Am. Chem. Soc. 131, 18404–18409 (2009).

    Google Scholar 

  33. DeVol, R. T. et al. Nanoscale transforming mineral phases in fresh nacre. J. Am. Chem. Soc. 137, 13325–13333 (2015).

    Google Scholar 

  34. Schmidt, C. A. et al. Faster crystallization during coral skeleton formation correlates with resilience to ocean acidification. J. Am. Chem. Soc. 144, 1332–1341 (2022).

    Google Scholar 

  35. Turnbull, D. Kinetics of heterogeneous nucleation. J. Chem. Phys. 18, 198–203 (1950).

    Google Scholar 

  36. Avrami, M. Kinetics of phase change. I General theory. J. Chem. Phys. 7, 1103–1112 (1939).

    Google Scholar 

  37. Brown, M. E. The Prout-Tompkins rate equation in solid-state kinetics. Thermochim. Acta 300, 93–106 (1997).

    Google Scholar 

  38. Crank, J. The Mathematics of Diffusion (Oxford University Press, 1979).

  39. Meldrum, F. C. & O’Shaughnessy, C. Crystallization in confinement. Adv. Mater. 32, 2001068 (2020).

    Google Scholar 

  40. Nam, H. et al. Network context and selection in the evolution to enzyme specificity. Science 337, 1101–1104 (2012).

    Google Scholar 

  41. Bezsudnova, E. Y. et al. Probing the role of the residues in the active site of the transaminase from Thermobaculum terrenum. PLoS ONE 16, e0255098 (2021).

    Google Scholar 

  42. Akiva-Tal, A. et al. In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO3 biomineral in crayfish gastroliths. Proc. Natl. Acad. Sci. USA 108, 14763–14768 (2011).

    Google Scholar 

  43. Al-Sawalmih, A., Li, C. H., Siegel, S., Fratzl, P. & Paris, O. On the Stability Of Amorphous Minerals In Lobster Cuticle. Adv. Mater. 21, 4011 (2009).

    Google Scholar 

  44. Stephens, C. J., Ladden, S. F., Meldrum, F. C. & Christenson, H. K. Amorphous calcium carbonate is stabilized in confinement. Adv. Funct. Mater. 20, 2108–2115 (2010).

    Google Scholar 

  45. Tambutté, E. et al. Morphological plasticity of the coral skeleton under CO-driven seawater acidification. Nat. Commun. 6, 7368 (2015).

  46. Mergelsberg, S. T. et al. Metastable solubility and local structure of amorphous calcium carbonate (ACC). Geochim. Cosmochim. Acta 289, 196–206 (2020).

    Google Scholar 

  47. De Stasio, G., Frazer, B. H., Gilbert, B., Richter, K. L. & Valley, J. W. Compensation of charging in X-PEEM: a successful test on mineral inclusions in 4.4 Ga old zircon. Ultramicroscopy 98, 57–62 (2003).

    Google Scholar 

  48. Gilbert B. Gilbert PUPA. GG Macros. https://doi.org/10.5281/zenodo.17314121 (2025).

  49. Coronado, I., Fine, M., Bosellini, F. R. & Stolarski, J. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nat. Commun. 10, 2896 (2019).

    Google Scholar 

  50. Stolarski, J. et al. A modern scleractinian coral with a two-component calcite–aragonite skeleton. Proc. Natl. Acad. Sci. USA 118, e2013316117 (2021).

    Google Scholar 

  51. Moler, C. & Little, J. A history of MATLAB. Proc. ACM Program. Lang. 4, 1–67 (2020).

  52. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Google Scholar 

  53. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python (vol 33, pg 219, 2020). Nat. Methods 17, 352–352 (2020).

    Google Scholar 

  54. McKinney, W. Data structures fro statistical computing in Python. SciPy. https://doi.org/10.25080/Majora-92bf1922-00a (2010).

  55. Marquardt, D. W. Citation Classic—algorithm for least-squares estimation of non-linear parameters. Contents/Eng. Technol. Appl. Sci. (1979).

  56. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  57. Rechav, Z. & LeCloux, I. M. Zenodo, https://doi.org/10.5281/zenodo.18175786 (2026).

  58. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

Download references

Acknowledgements

The authors thank Aiden Gustafson and James J. De Yoreo for scientific discussions, M. Cristina Castillo Alvarez and Connor A. Schmidt for assistance during sample preparation and PEEM data acquisition, and Andreas Scholl for technical help during PEEM measurements. This work was supported by the National Science Foundation Graduate Research Fellowship Program (grant DGE-1747503) (Z.R.). This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1747503. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the University of Wisconsin–Madison (grant DE-FG02-07ER15899) (P.G.) and at Lawrence Berkeley National Laboratory (grant FWP-FP00011135) (P.G.), and by the National Science Foundation Biomaterials Program (grant DMR-2220274) (P.G.). This research used resources of the Advanced Light Source, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

  1. Department of Physics, University of Wisconsin, Madison, WI, USA

    Zoë Rechav, Isabelle M. LeCloux, Samantha Anglemyer, Natalie E. Beltz, Nicolas A. Chou, Brynne E. Dixson-Kruijf, Johannes Domagk, Anders M. Larson, Sylvia W. Lewis, Rhita Rich, Lateef O. Saheed, James L. Schwenk, Jaden S. Sengkhammee, Christian A. Waltenberg, Jianfeng Ye & Pupa U. P. A. Gilbert

  2. Department of Marine Biology, Centre Scientifique de Monaco, Monaco, Principality of Monaco

    Eric Tambutté, Alexander A. Venn & Sylvie Tambutté

  3. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Barat Q. Achinuq

  4. Departments of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin, Madison, WI, USA

    Pupa U. P. A. Gilbert

  5. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Pupa U. P. A. Gilbert

Authors
  1. Zoë Rechav
    View author publications

    Search author on:PubMed Google Scholar

  2. Eric Tambutté
    View author publications

    Search author on:PubMed Google Scholar

  3. Isabelle M. LeCloux
    View author publications

    Search author on:PubMed Google Scholar

  4. Samantha Anglemyer
    View author publications

    Search author on:PubMed Google Scholar

  5. Natalie E. Beltz
    View author publications

    Search author on:PubMed Google Scholar

  6. Nicolas A. Chou
    View author publications

    Search author on:PubMed Google Scholar

  7. Brynne E. Dixson-Kruijf
    View author publications

    Search author on:PubMed Google Scholar

  8. Johannes Domagk
    View author publications

    Search author on:PubMed Google Scholar

  9. Anders M. Larson
    View author publications

    Search author on:PubMed Google Scholar

  10. Sylvia W. Lewis
    View author publications

    Search author on:PubMed Google Scholar

  11. Rhita Rich
    View author publications

    Search author on:PubMed Google Scholar

  12. Lateef O. Saheed
    View author publications

    Search author on:PubMed Google Scholar

  13. James L. Schwenk
    View author publications

    Search author on:PubMed Google Scholar

  14. Jaden S. Sengkhammee
    View author publications

    Search author on:PubMed Google Scholar

  15. Christian A. Waltenberg
    View author publications

    Search author on:PubMed Google Scholar

  16. Jianfeng Ye
    View author publications

    Search author on:PubMed Google Scholar

  17. Barat Q. Achinuq
    View author publications

    Search author on:PubMed Google Scholar

  18. Alexander A. Venn
    View author publications

    Search author on:PubMed Google Scholar

  19. Sylvie Tambutté
    View author publications

    Search author on:PubMed Google Scholar

  20. Pupa U. P. A. Gilbert
    View author publications

    Search author on:PubMed Google Scholar

Contributions

P.G., I.L., and Z.R. conceptualized the study and carried out the investigation. E.T., S.T., and A.V. provided samples. P.G., I.L., Z.R., and B.A. performed PEEM data acquisition. M.M. production was carried out by I.L., S.A., N.B., N.C., B.D.-K., J.D., A.L., S.L., R.R., L.S., J.L.S., J.S.S., C.W., J.Y., Z.R., and P.G. I.L. and Z.R. performed the data analysis. P.G. and Z.R. acquired funding. P.G. and Z.R. wrote the original draft of the manuscript. P.G., Z.R., and all co-authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Pupa U. P. A. Gilbert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Gabriela Farfan and the other anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rechav, Z., Tambutté, E., LeCloux, I.M. et al. Exponential crystallization in corals. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69215-4

Download citation

  • Received: 30 July 2025

  • Accepted: 27 January 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69215-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing