Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Sex-specific differences in mediobasal hypothalamus in response to nutritional states
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Sex-specific differences in mediobasal hypothalamus in response to nutritional states

  • Jonathan C. Bean  ORCID: orcid.org/0000-0002-8007-23831 na1,
  • Jinjing Jian  ORCID: orcid.org/0009-0009-3912-16551 na1 nAff7,
  • Tzu-Chiao Lu2,3,
  • Hailan Liu1 nAff7,
  • Kristine Conde1 nAff7,
  • Darah A. Threat1,
  • Sanika V. Jossy1,
  • Megan E. Burt1,
  • Jingjing Cheng1 nAff7,
  • Yue Deng  ORCID: orcid.org/0000-0001-8874-911X1 nAff7,
  • Xing Fang1,
  • Xiaoyu Geng1,
  • Junying Han1,
  • Yongxiang Li1 nAff7,
  • Hesong Liu1,
  • Qingzhuo Liu  ORCID: orcid.org/0009-0003-1243-27831 nAff7,
  • Yutian Liu1 nAff7,
  • Yuhan Shi1,
  • Longlong Tu  ORCID: orcid.org/0000-0002-6955-60021 nAff7,
  • Mengjie Wang1 nAff7,
  • Xu Xu1,
  • Yuxue Yang1 nAff7,
  • Meng Yu  ORCID: orcid.org/0000-0002-8007-33781,
  • Xinming Liu1 nAff7,
  • Meixin Sun1 nAff7,
  • Fuhui Wang1 nAff7,
  • Olivia Z. Ginnard  ORCID: orcid.org/0000-0002-8175-63571,
  • Yongjie Yang1 nAff7,
  • Yang He  ORCID: orcid.org/0000-0002-7460-56494,
  • Chunmei Wang1,
  • Yanyan Qi2,3,
  • Hongjie Li  ORCID: orcid.org/0000-0002-7332-71222,3 &
  • …
  • Yong Xu  ORCID: orcid.org/0000-0002-4908-15721,5,6 nAff7 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Feeding behaviour
  • Hypothalamus

Abstract

The arcuate nucleus of the hypothalamus plays a central role in sensing and integrating nutritional, hormonal, and neural signals that regulate feeding, energy homeostasis, growth, and reproduction, all of which show pronounced sex differences. However, the cellular mechanisms underlying these responses remain poorly understood. We performed snRNA-seq of the mediobasal hypothalamus, focusing on the arcuate nucleus, in female and male mice under different nutritional states. Analysis of 42 cell types revealed that Agrp neurons were most sensitive to nutritional changes, dopaminergic neurons showed strong sex-specific differences, and KNDy neurons were highly responsive to both sex and nutrition. Pomc neurons displayed moderate nutritional sensitivity. Most glial populations were stable, although microglia and oligodendrocytes showed moderate variation. Cell–cell communication analysis identified neurotrophic factor signaling as a key pathway regulated by sex and nutrition. This study represents a major effort to comprehensively characterize sex-specific differences in arcuate nucleus response across nutritional conditions.

Similar content being viewed by others

Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice

Article Open access 16 March 2024

Single-cell analysis of the aging female mouse hypothalamus

Article Open access 04 July 2022

Nutritional interventions to counteract the detrimental consequences of early-life stress

Article Open access 27 April 2025

Data availability

The fully processed snRNA-seq dataset generated in this study have been deposited in the Gene Expression Omnibus (GEO) database under accession code GSE282955. Source data are provided as a Source Data file. Source data are provided with this paper.

Code availability

Detailed analysis codes used in this study are available on the Github repository 663 (https://github.com/jbeanphd/ARH_Sex_by_Nutr) https://doi.org/10.5281/zenodo.18276251.

References

  1. World Health Organization. World Health Statistics 2023: Monitoring Health for the SDGs, Sustainable Development Goals. 1–119 https://www.who.int/publications-detail-redirect/9789240074323 (WHO, 2023).

  2. Bryan, S. et al. NHSR 158. National Health and Nutrition Examination Survey 2017–March 2020 Pre-Pandemic Data Files. https://stacks.cdc.gov/view/cdc/106273 (NHSR, 2021) https://doi.org/10.15620/cdc:106273.

  3. Collaboration, P. S Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 373, 1083–1096 (2009).

    Google Scholar 

  4. Kannel, W. B. et al. Regional obesity and risk of cardiovascular disease; the Framingham study. J. Clin. Epidemiol. 44, 183–190 (1991).

    Google Scholar 

  5. Gesta, S., Tseng, Y.-H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007).

    Google Scholar 

  6. Lee, C. G. et al. Adipokines, inflammation, and visceral adiposity across the menopausal transition: a prospective study. J. Clin. Endocrinol. Metab. 94, 1104–1110 (2009).

    Google Scholar 

  7. Xu, Y. et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 14, 453–465 (2011).

    Google Scholar 

  8. Wislocki, G. B. & King, L. S. The permeability of the hypophysis and hypothalamus to vital dyes, with a study of the hypophyseal vascular supply. Am. J. Anat. 58, 421–472 (1936).

    Google Scholar 

  9. Gross, P. M. & Weindl, A. Peering through the windows of the brain. J. Cereb. Blood Flow. Metab. J. Int. Soc. Cereb. Blood Flow. Metab. 7, 663–672 (1987).

    Google Scholar 

  10. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Google Scholar 

  11. Castro-Dufourny, I., Carrasco, R., Prieto, R. & Pascual, J. M. Jean Camus and Gustave Roussy: pioneering French researchers on the endocrine functions of the hypothalamus. Pituitary 20, 409–421 (2017).

    Google Scholar 

  12. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    Google Scholar 

  13. Zhang, X. & van den Pol, A. N. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat. Neurosci. 19, 1341–1347 (2016).

    Google Scholar 

  14. Fenselau, H. et al. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nat. Neurosci. 20, 42–51 (2017).

    Google Scholar 

  15. Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. J. Soc. Neurosci. 33, 3624–3632 (2013).

    Google Scholar 

  16. Herbison, A. E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452–466 (2016).

    Google Scholar 

  17. Thorner, M. O. et al. Physiological role of somatostatin on growth hormone regulation in humans. Metabolism 39, 40–42 (1990).

    Google Scholar 

  18. Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    Google Scholar 

  19. Deng, G. et al. Single-nucleus rna sequencing of the hypothalamic arcuate nucleus of C57BL/6J mice after prolonged diet-induced obesity. Hypertens. Dallas Tex. 76, 589–597 (2020).

    Google Scholar 

  20. Steuernagel, L. et al. HypoMap—a unified single-cell gene expression atlas of the murine hypothalamus. Nat. Metab. 4, 1402–1419 (2022).

    Google Scholar 

  21. Germain, P.-L., Lun, A., Garcia Meixide, C., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. Research 10, 979 (2021).

    Google Scholar 

  22. Li, H. et al. Fly cell atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).

    Google Scholar 

  23. Lu, T.-C. et al. Aging fly cell atlas identifies exhaustive aging features at cellular resolution. Science 380, eadg0934 (2023).

    Google Scholar 

  24. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Google Scholar 

  25. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9, giaa151 (2020).

    Google Scholar 

  26. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data | Genome Biology | Full Text. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0844-5in/hdWGCNA.R.

  27. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    Google Scholar 

  28. van Maanen, J. H. & Smelik, P. G. Depletion of monoamines in the hypothalamus and prolactin secretion. Acta Physiol. Pharmacol. Neerl. 14, 519–520 (1967).

    Google Scholar 

  29. Tullai, J. W. et al. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J. Biol. Chem. 282, 23981–23995 (2007).

    Google Scholar 

  30. Jurgens, H. A. & Johnson, R. W. Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation. Exp. Neurol. 233, 40–48 (2012).

    Google Scholar 

  31. Cai, Z. & Xiao, M. Oligodendrocytes and Alzheimer’s disease. Int. J. Neurosci. 126, 97–104 (2016).

    Google Scholar 

  32. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Google Scholar 

  33. Alhadeff, A. L. et al. A neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152 (2018).

    Google Scholar 

  34. Burnett, C. J. et al. Hunger-driven motivational state competition. Neuron 92, 187–201 (2016).

    Google Scholar 

  35. Dietrich, M. O., Zimmer, M. R., Bober, J. & Horvath, T. L. Hypothalamic AGRP neurons drive stereotypic behaviors beyond feeding. Cell 160, 1222–1232 (2015).

    Google Scholar 

  36. Padilla, S. L. et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat. Neurosci. 19, 734–741 (2016).

    Google Scholar 

  37. Xu, Y., Elmquist, J. K. & Fukuda, M. Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann. N. Y. Acad. Sci. 1243, 1–14 (2011).

    Google Scholar 

  38. Castellano, J. M. et al. Early metabolic programming of puberty onset: impact of changes in postnatal feeding and rearing conditions on the timing of puberty and development of the hypothalamic kisspeptin system. Endocrinology 152, 3396–3408 (2011).

    Google Scholar 

  39. Navarro, V. M. Metabolic regulation of kisspeptin—the link between energy balance and reproduction. Nat. Rev. Endocrinol. 16, 407–420 (2020).

    Google Scholar 

  40. Padilla, S. L. et al. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc. Natl. Acad. Sci. USA 114, 2413–2418 (2017).

    Google Scholar 

  41. Donato, J. et al. Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J. Clin. Invest. 121, 355–368 (2011).

    Google Scholar 

  42. Sun, J. et al. Caloric restriction in female reproduction: is it beneficial or detrimental? Reprod. Biol. Endocrinol. 19, 1 (2021).

    Google Scholar 

  43. Caron, M. G. et al. Dopaminergic receptors in the anterior pituitary gland. Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J. Biol. Chem. 253, 2244–2253 (1978).

    Google Scholar 

  44. Manjarrez-Gutiérrez, G., González-Ramírez, M., de Oca, A. B.-M., Herrera-Márquez, R. & Hernández-Rodríguez, J. Serotonin and dopamine in the hypothalamus of control and malnourished mother rats during pregnancy and lactation and body composition of their offspring. Nutr. Neurosci. 16, 225–232 (2013).

    Google Scholar 

  45. Lee, A. K. et al. Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition 26, 411–422 (2010).

    Google Scholar 

  46. Moore, S. W., Tessier-Lavigne, M. & Kennedy, T. E. Netrins and their receptors. Adv. Exp. Med. Biol. 621, 17–31 (2007).

    Google Scholar 

  47. Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 4, 118–132 (2004).

    Google Scholar 

  48. Wu, Y., Dissing-Olesen, L., MacVicar, B. A. & Stevens, B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613 (2015).

    Google Scholar 

  49. Huang, Y. et al. Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice. Nat. Commun. 15, 2382 (2024).

    Google Scholar 

  50. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    Google Scholar 

  51. Lv, Z. et al. Clearance of β-amyloid and synapses by the optogenetic depolarization of microglia is complement selective. Neuron 112, 740–754 (2024).

    Google Scholar 

  52. Nave, K.-A. & Werner, H. B. Myelination of the nervous system: mechanisms and functions. Annu. Rev. Cell Dev. Biol. 30, 503–533 (2014).

    Google Scholar 

  53. Kohnke, S. et al. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep. 36, 109362 (2021).

    Google Scholar 

  54. Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

    Google Scholar 

  55. Scarlett, J. M. et al. Peripheral mechanisms mediating the sustained antidiabetic action of FGF1 in the brain. Diabetes 68, 654–664 (2019).

    Google Scholar 

  56. Hwang, E. et al. Sustained inhibition of NPY/AgRP neuronal activity by FGF1. JCI Insight 7, e160891 (2022).

  57. Bean, J. C. et al. Genetic labeling reveals novel cellular targets of schizophrenia susceptibility gene: distribution of GABA and non-GABA ErbB4-positive cells in adult mouse brain. J. Neurosci. 34, 13549–13566 (2014).

    Google Scholar 

  58. Santiago-Marrero, I. et al. Energy expenditure homeostasis requires ErbB4, an obesity risk gene, in the paraventricular nucleus. eNeuro 10, 0139 (2023).

  59. Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates. (Academic Press, 2001).

  60. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Google Scholar 

  61. McLaughlin, C. N., Qi, Y., Quake, S. R., Luo, L. & Li, H. Isolation and RNA sequencing of single nuclei from Drosophila tissues. STAR Protoc. 3, 101417 (2022).

    Google Scholar 

  62. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Google Scholar 

  63. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Google Scholar 

  64. Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 3, 100498 (2023).

    Google Scholar 

Download references

Acknowledgements

H.L. discloses support for the research of this work from the CPRIT Scholar in Cancer Research [RR200063], NIH/NIA [U01AG086143], NIH [DP2AT013275], the Longevity Impetus Grant, the Ted Nash Long Life Foundation, and the Welch Foundation. Y.X. discloses support for the research of this work from the Silver Endowment. X.F. discloses support for the research of this work from NIDDK [1F32DK138685-01A1]. M.W. discloses support for the research of this work from NIMHD [1F32HD112123-01A1].

Author information

Author notes
  1. Jinjing Jian, Hailan Liu, Kristine Conde, Jingjing Cheng, Yue Deng, Yongxiang Li, Qingzhuo Liu, Yutian Liu, Longlong Tu, Mengjie Wang, Yuxue Yang, Xinming Liu, Meixin Sun, Fuhui Wang, Yongjie Yang & Yong Xu

    Present address: Center for Molecular Psychiatry, Department of Psychiatry & Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA

  2. These authors contributed equally: Jonathan C. Bean, Jinjing Jian.

Authors and Affiliations

  1. USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA

    Jonathan C. Bean, Jinjing Jian, Hailan Liu, Kristine Conde, Darah A. Threat, Sanika V. Jossy, Megan E. Burt, Jingjing Cheng, Yue Deng, Xing Fang, Xiaoyu Geng, Junying Han, Yongxiang Li, Hesong Liu, Qingzhuo Liu, Yutian Liu, Yuhan Shi, Longlong Tu, Mengjie Wang, Xu Xu, Yuxue Yang, Meng Yu, Xinming Liu, Meixin Sun, Fuhui Wang, Olivia Z. Ginnard, Yongjie Yang, Chunmei Wang & Yong Xu

  2. Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA

    Tzu-Chiao Lu, Yanyan Qi & Hongjie Li

  3. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA

    Tzu-Chiao Lu, Yanyan Qi & Hongjie Li

  4. Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA

    Yang He

  5. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA

    Yong Xu

  6. Department of Medicine, Baylor College of Medicine, Houston, TX, USA

    Yong Xu

Authors
  1. Jonathan C. Bean
    View author publications

    Search author on:PubMed Google Scholar

  2. Jinjing Jian
    View author publications

    Search author on:PubMed Google Scholar

  3. Tzu-Chiao Lu
    View author publications

    Search author on:PubMed Google Scholar

  4. Hailan Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Kristine Conde
    View author publications

    Search author on:PubMed Google Scholar

  6. Darah A. Threat
    View author publications

    Search author on:PubMed Google Scholar

  7. Sanika V. Jossy
    View author publications

    Search author on:PubMed Google Scholar

  8. Megan E. Burt
    View author publications

    Search author on:PubMed Google Scholar

  9. Jingjing Cheng
    View author publications

    Search author on:PubMed Google Scholar

  10. Yue Deng
    View author publications

    Search author on:PubMed Google Scholar

  11. Xing Fang
    View author publications

    Search author on:PubMed Google Scholar

  12. Xiaoyu Geng
    View author publications

    Search author on:PubMed Google Scholar

  13. Junying Han
    View author publications

    Search author on:PubMed Google Scholar

  14. Yongxiang Li
    View author publications

    Search author on:PubMed Google Scholar

  15. Hesong Liu
    View author publications

    Search author on:PubMed Google Scholar

  16. Qingzhuo Liu
    View author publications

    Search author on:PubMed Google Scholar

  17. Yutian Liu
    View author publications

    Search author on:PubMed Google Scholar

  18. Yuhan Shi
    View author publications

    Search author on:PubMed Google Scholar

  19. Longlong Tu
    View author publications

    Search author on:PubMed Google Scholar

  20. Mengjie Wang
    View author publications

    Search author on:PubMed Google Scholar

  21. Xu Xu
    View author publications

    Search author on:PubMed Google Scholar

  22. Yuxue Yang
    View author publications

    Search author on:PubMed Google Scholar

  23. Meng Yu
    View author publications

    Search author on:PubMed Google Scholar

  24. Xinming Liu
    View author publications

    Search author on:PubMed Google Scholar

  25. Meixin Sun
    View author publications

    Search author on:PubMed Google Scholar

  26. Fuhui Wang
    View author publications

    Search author on:PubMed Google Scholar

  27. Olivia Z. Ginnard
    View author publications

    Search author on:PubMed Google Scholar

  28. Yongjie Yang
    View author publications

    Search author on:PubMed Google Scholar

  29. Yang He
    View author publications

    Search author on:PubMed Google Scholar

  30. Chunmei Wang
    View author publications

    Search author on:PubMed Google Scholar

  31. Yanyan Qi
    View author publications

    Search author on:PubMed Google Scholar

  32. Hongjie Li
    View author publications

    Search author on:PubMed Google Scholar

  33. Yong Xu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.C.B., H.L., and Y.X. co-conceptualized the study. J.C.B. and J.J. performed the experiments and analyses, with assistance from T.C.L., H.L., K.M.M., D.A.T., S.V.J., M.E.B., J.C., Y.D., X.F., X.G., J.H., Y.L., H.L., Q.L., Y.L., Y.S., L.T., M.W., X.X., Y.Y., M.Y., X.L., M.S., F.W., O.Z.G., Y.Y., Y.H., C.W., and Y.Q., H.L., and Y.X. supervised the study.

Corresponding authors

Correspondence to Hongjie Li or Yong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tune Pers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Supplementary Data 10

Supplementary Data 11

Supplementary Data 12

Supplementary Data 13

Supplementary Data 14

Supplementary Data 15

Supplementary Data 16

Supplementary Data 17

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bean, J.C., Jian, J., Lu, TC. et al. Sex-specific differences in mediobasal hypothalamus in response to nutritional states. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69239-w

Download citation

  • Received: 17 August 2025

  • Accepted: 26 January 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69239-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing