Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
COVID-19-related inflammation of the placenta impedes fetal development in pregnant hamsters
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

COVID-19-related inflammation of the placenta impedes fetal development in pregnant hamsters

  • Yana Kumpanenko1,
  • Elke Maas1,
  • Joran Degryse  ORCID: orcid.org/0009-0005-6730-43021,
  • Birgit Weynand2,
  • Hilde Van de Velde3,
  • Johan Neyts  ORCID: orcid.org/0000-0002-0033-75144,5,
  • Katrien De Clercq6,
  • Yeranddy A. Alpizar  ORCID: orcid.org/0000-0003-1959-53931 &
  • …
  • Kai Dallmeier  ORCID: orcid.org/0000-0002-8117-91661 

Nature Communications , Article number:  (2026) Cite this article

  • 2646 Accesses

  • 30 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Hamster
  • Infection
  • SARS-CoV-2
  • Viral infection

Abstract

Pregnant women are at higher risk of severe COVID-19, with vaccine access and hesitancy remaining a challenge. Here, we use a pregnant female hamster model of COVID-19 to explore the effects of maternal infection on pregnancy, revealing a significant increase in intrauterine growth restriction (IUGR) due to placental inflammation. Viral infection causes bronchopneumonia and weight loss in infected dams, but no vertical transmission occurs. IUGR is instead linked to placental damage, characterized by fibrin deposition, thrombosis, and elevated placental expression of IP10, IL6, and IL10, irrespective of fetal sex. Enoxaparin treatment reduces placental damage and improves fetal outcomes, while vaccination enhances viral clearance, protects the placenta, and reduces the risk of IUGR. These findings underscore placentitis as a key driver of fetal complications upon SARS-CoV-2 infection and highlight the potential of vaccination and anticoagulant therapy to protect both mother and child.

Similar content being viewed by others

Placental response to maternal SARS-CoV-2 infection

Article Open access 13 July 2021

Presence of SARS-CoV-2 in fetal organs via intraamniotic infection

Article Open access 21 November 2025

Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2

Article Open access 18 January 2022

Data availability

Datasets generated and/or analyzed during the current study are provided in the paper or are appended as supplementary data. Source data are provided with this paper.

Code availability

Code for the analysis of sex distribution and confounding effect is available at https://github.com/Molecular-Vaccinology-Vaccine-Discovery/Kumpanenko-et-al-Nat-Commun-2026.

References

  1. Jin, J. M. et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front. Public Health 8, 152 (2020).

    Google Scholar 

  2. Ganaza-Domingues, K. L. T. et al. Effect of comorbidities on the mortality of patients with COVID-19: a systematic review of reviews and meta-analyses. Rev. Med. Virol. 35, e70024 (2025).

    Google Scholar 

  3. Racicot, K. & Mor, G. Risks associated with viral infections during pregnancy. J. Clin. Investig. 127, 1591–1599 (2017).

    Google Scholar 

  4. Virk, S. et al. Impact of COVID-19 on pregnancy outcomes across trimesters in the United States. Biomedicines 11, 2886 (2023).

    Google Scholar 

  5. Vouga, M. et al. Maternal outcomes and risk factors for COVID-19 severity among pregnant women. Sci. Rep. 11, 13898 (2021).

    Google Scholar 

  6. Allotey, J. et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ 370, m3320 (2020).

    Google Scholar 

  7. Metz, T. D. et al. Association of SARS-CoV-2 infection with serious maternal morbidity and mortality from obstetric complications. JAMA 327, 748–759 (2022).

    Google Scholar 

  8. Creisher, P. S. & Klein, S. L. Pathogenesis of viral infections during pregnancy. Clin. Microbiol. Rev. 37, e0007323 (2024).

    Google Scholar 

  9. Megli, C. J. & Coyne, C. B. Infections at the maternal–fetal interface: an overview of pathogenesis and defence. Nat. Rev. Microbiol. 20, 67–82 (2022).

    Google Scholar 

  10. Somerville, L. K., Basile, K., Dwyer, D. E. & Kok, J. The impact of influenza virus infection in pregnancy. Future Microbiol. 13, 263–274 (2018).

    Google Scholar 

  11. Stolojanu, C. et al. COVID-19 and its potential impact on children born to mothers infected during pregnancy: a comprehensive review. Diagnostics (Basel) 14, 2443 (2024).

    Google Scholar 

  12. Wong, Y. P., Tan, G. C. & Khong, T. Y. SARS-CoV-2 transplacental transmission: a rare occurrence? An overview of the protective role of the placenta. Int. J. Mol. Sci. 24, 4550 (2023).

    Google Scholar 

  13. Wu, S. et al. Presence of SARS-CoV-2 in fetal organs via intraamniotic infection. Nat. Commun. 16, 10261 (2025).

    Google Scholar 

  14. Schwartz, D. A. et al. Placental tissue destruction and insufficiency from COVID-19 causes stillbirth and neonatal death from hypoxic-ischemic injury. Arch. Pathol. Lab. Med. 146, 660–676 (2022).

    Google Scholar 

  15. Li, A. et al. Impact of SARS-CoV-2 infection during pregnancy on the placenta and fetus. Semin. Perinatol. 48, 151919 (2024).

    Google Scholar 

  16. Raval, P. et al. Differences in placental pathologic features by trimester of infection with SARS-CoV-2. Pediatr. Dev. Pathol. 28, 264–272 (2025).

  17. Ezechukwu, H. C. et al. Fetoplacental transmission and placental response to SARS-CoV-2: evidence from the literature. Front. Med. (Lausanne) 9, 962937 (2022).

    Google Scholar 

  18. Gianfredi, V. et al. A systematic review of population-based studies assessing knowledge, attitudes, acceptance, and hesitancy of pregnant and breastfeeding women towards the COVID-19 vaccine. Vaccines (Basel) 11, 1289 (2023).

    Google Scholar 

  19. Razzaghi, H. et al. Influenza, Tdap, and COVID-19 vaccination coverage and hesitancy among pregnant women—United States, April 2023. MMWR Morb. Mortal. Wkly Rep. 72, 1065–1071 (2023).

    Google Scholar 

  20. Wang, C. et al. Effects of COVID-19 vaccination on human fertility: a post-pandemic literature review. Ann. Med. 55, 2261964 (2023).

    Google Scholar 

  21. Ciapponi, A. et al. Safety of COVID-19 vaccines during pregnancy: a systematic review and meta-analysis. Vaccine 41, 3688–3700 (2023).

    Google Scholar 

  22. Bestion, E., Halfon, P., Mezouar, S. & Mege, J. L. Cell and animal models for SARS-CoV-2 research. Viruses 14, 1507 (2022).

    Google Scholar 

  23. Chen, Z. et al. SARS-CoV-2 immunity in animal models. Cell. Mol. Immunol. 21, 119–133 (2024).

    Google Scholar 

  24. Soares, M. J., Varberg, K. M. & Iqbal, K. Hemochorial placentation: development, function, and adaptations. Biol. Reprod. 99, 196–211 (2018).

    Google Scholar 

  25. Rai, A. & Cross, J. C. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev. Biol. 387, 131–141 (2014).

    Google Scholar 

  26. Ander, S. E., Diamond, M. S. & Coyne, C. B. Immune responses at the maternal-fetal interface. Sci. Immunol. 4, eaat6114 (2019).

    Google Scholar 

  27. Carter, A. M. Animal models of human placentation—a review. Placenta 28(Suppl. A), S41–S47 (2007).

    Google Scholar 

  28. Soncin, F., Natale, D. & Parast, M. M. Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell. Mol. Life Sci. 72, 1291–1302 (2015).

    Google Scholar 

  29. Kim, B. et al. Effect of severe acute respiratory syndrome coronavirus 2 infection during pregnancy in K18-hACE2 transgenic mice. Anim. Biosci. 36, 43–52 (2023).

    Google Scholar 

  30. Creisher, P. S. et al. Adverse outcomes in SARS-CoV-2-infected pregnant mice are gestational age-dependent and resolve with antiviral treatment. J. Clin. Investig. 133, e170687 (2023).

    Google Scholar 

  31. Boudewijns, R. et al. STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nat. Commun. 11, 5838 (2020).

    Google Scholar 

  32. Sanchez-Felipe, L. et al. A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature 590, 320–325 (2021).

    Google Scholar 

  33. Sharma, S. et al. Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters. Nat. Commun. 13, 6644 (2022).

    Google Scholar 

  34. Kaptein, S. J. F. et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. Proc. Natl. Acad. Sci. USA 117, 26955–26965 (2020).

    Google Scholar 

  35. Gumina, D. L. & Su, E. J. Mechanistic insights into the development of severe fetal growth restriction. Clin. Sci. (Lond.) 137, 679–695 (2023).

    Google Scholar 

  36. Abdelnabi, R., Lassauniere, R., Maes, P., Weynand, B. & Neyts, J. Comparing the infectivity of recent SARS-CoV-2 omicron sub-variants in Syrian hamsters. Viruses 16, 122 (2024).

    Google Scholar 

  37. Ogura, A., Nishida, T., Hayashi, Y. & Mochida, K. The development of the uteroplacental vascular system in the golden hamster Mesocricetus auratus. J. Anat. 175, 65–77 (1991).

    Google Scholar 

  38. Abdelnabi, R. et al. Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters. EBioMedicine 68, 103403 (2021).

    Google Scholar 

  39. Zhu, J., Li, Z. & Deng, Y. Comprehensive reference intervals for white blood cell counts during pregnancy. BMC Pregnancy Childbirth 24, 35 (2024).

    Google Scholar 

  40. Chandra, S., Tripathi, A. K., Mishra, S., Amzarul, M. & Vaish, A. K. Physiological changes in hematological parameters during pregnancy. Indian J. Hematol. Blood Transfus. 28, 144–146 (2012).

    Google Scholar 

  41. Nouailles, G. et al. Temporal omics analysis in Syrian hamsters unravel cellular effector responses to moderate COVID-19. Nat. Commun. 12, 4869 (2021).

    Google Scholar 

  42. Alur, P., Holla, I. & Hussain, N. Impact of sex, race, and social determinants of health on neonatal outcomes. Front. Pediatr. 12, 1377195 (2024).

    Google Scholar 

  43. Edlow, A. G. et al. Sex-specific neurodevelopmental outcomes among offspring of mothers with SARS-CoV-2 infection during pregnancy. JAMA Netw. Open 6, e234415 (2023).

    Google Scholar 

  44. Lee, G., Andrade, G. M., Kim, Y. J. & Anumba, D. O. C. The sex difference in the pathophysiology of preterm birth. Cells 14, 1084 (2025).

    Google Scholar 

  45. Cotechini, T. et al. Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. J. Exp. Med. 211, 165–179 (2014).

    Google Scholar 

  46. Radan, A. P. et al. Low placental weight and altered metabolic scaling after severe acute respiratory syndrome coronavirus type 2 infection during pregnancy: a prospective multicentric study. Clin. Microbiol. Infect. 28, 718–722 (2022).

    Google Scholar 

  47. Weckman, A. M., Ngai, M., Wright, J., McDonald, C. R. & Kain, K. C. The impact of infection in pregnancy on placental vascular development and adverse birth outcomes. Front. Microbiol. 10, 1924 (2019).

    Google Scholar 

  48. Yockey, L. J. et al. Type I interferons instigate fetal demise after Zika virus infection. Sci. Immunol. 3, eaao1680 (2018).

    Google Scholar 

  49. Hecht, J. L. et al. SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placentas from COVID-19-positive mothers. Mod. Pathol. 33, 2092–2103 (2020).

    Google Scholar 

  50. Wanner, N. et al. Molecular consequences of SARS-CoV-2 liver tropism. Nat. Metab. 4, 310–319 (2022).

    Google Scholar 

  51. Georgiades, P., Ferguson-Smith, A. C. & Burton, G. J. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23, 3–19 (2002).

    Google Scholar 

  52. Woods, L., Perez-Garcia, V. & Hemberger, M. Regulation of placental development and its impact on fetal growth—new insights from mouse models. Front. Endocrinol. (Lausanne) 9, 570 (2018).

  53. De Clercq, K. et al. High-resolution contrast-enhanced microCT reveals the true three-dimensional morphology of the murine placenta. Proc. Natl. Acad. Sci. USA 116, 13927–13936 (2019).

    Google Scholar 

  54. Minior, V. K., Levine, B., Ferber, A., Guller, S. & Divon, M. Y. Nucleated red blood cells as a marker of acute and chronic fetal hypoxia in a rat model. Rambam Maimonides Med. J. 8, e0025 (2017).

    Google Scholar 

  55. Conway, E. M. et al. Understanding COVID-19-associated coagulopathy. Nat. Rev. Immunol. 22, 639–649 (2022).

    Google Scholar 

  56. Schwartz, D. A., Mulkey, S. B. & Roberts, D. J. SARS-CoV-2 placentitis, stillbirth, and maternal COVID-19 vaccination: clinical-pathologic correlations. Am. J. Obstet. Gynecol. 228, 261–269 (2023).

    Google Scholar 

  57. Varlas, V. N. et al. Thromboprophylaxis in pregnant women with COVID-19: an unsolved issue. Int. J. Environ. Res. Public Health 20, 1949 (2023).

    Google Scholar 

  58. Jacobson, B. et al. Safety and efficacy of enoxaparin in pregnancy: a systematic review and meta-analysis. Adv. Ther. 37, 27–40 (2020).

    Google Scholar 

  59. Anderson, H. L., Brodsky, I. E. & Mangalmurti, N. S. The evolving erythrocyte: red blood cells as modulators of innate immunity. J. Immunol. 201, 1343–1351 (2018).

    Google Scholar 

  60. Nombela, I. & Ortega-Villaizan, M. D. M. Nucleated red blood cells: immune cell mediators of the antiviral response. PLoS Pathog. 14, e1006910 (2018).

    Google Scholar 

  61. Degryse, J. et al. Antigenic imprinting dominates humoral responses to new variants of SARS-CoV-2 in a Hamster model of COVID-19. Microorganisms 12, 2591 (2024).

    Google Scholar 

  62. Li, L. H. et al. Biodistribution and environmental safety of a live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Mol. Ther. Methods Clin. Dev. 25, 215–224 (2022).

    Google Scholar 

  63. Garcia-Aguilar, P. et al. Effect of SARS-CoV-2 infection on perinatal outcomes by disease severity and trimester of pregnancy: a prospective cohort study. J. Gynecol. Obstet. Hum. Reprod. 55, 103058 (2025).

    Google Scholar 

  64. Liu, M. et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 22, 121–130 (2011).

    Google Scholar 

  65. Kim, C. J., Romero, R., Chaemsaithong, P. & Kim, J. S. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am. J. Obstet. Gynecol. 213, S53–S69 (2015).

    Google Scholar 

  66. Gotsch, F. et al. CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia? J. Matern. Fetal Neonatal Med. 20, 777–792 (2007).

    Google Scholar 

  67. Hoffmann, J. A., Grundler, K., Richter, D. U. & Stubert, J. Prediction of spontaneous preterm birth using CCL2 and CXCL10 in maternal serum of symptomatic high-risk pregnant women: a prospective cohort study. BMC Pregnancy Childbirth 23, 697 (2023).

    Google Scholar 

  68. Barrozo, E. R. et al. SARS-CoV-2 niches in human placenta revealed by spatial transcriptomics. Med 4, 612–634 e614 (2023).

    Google Scholar 

  69. Radan, A. P. et al. SARS-CoV-2 replicates in the placenta after maternal infection during pregnancy. Front. Med. (Lausanne) 11, 1439181 (2024).

    Google Scholar 

  70. Plasek, J. et al. COVID-19 associated coagulopathy: mechanisms and host-directed treatment. Am. J. Med. Sci. 363, 465–475 (2022).

    Google Scholar 

  71. Dagelic, A. et al. Does COVID-19 infection acquired in different pregnancy trimester influence placental pathology? J. Perinat. Med. 51, 607–613 (2023).

    Google Scholar 

  72. Baschat, A. A., Gembruch, U., Reiss, I., Gortner, L. & Harman, C. R. Neonatal nucleated red blood cell count and postpartum complications in growth restricted fetuses. J. Perinat. Med. 31, 323–329 (2003).

    Google Scholar 

  73. Julia-Burches, C. & Martinez-Varea, A. An update on COVID-19 vaccination and pregnancy. J. Pers. Med. 13, 797 (2023).

    Google Scholar 

  74. Tartaglia, S. et al. Effects of SARS-CoV-2 mRNA vaccine on placental histopathology: comparison of a population of uncomplicated COVID-19 positive pregnant women. Placenta 149, 64–71 (2024).

    Google Scholar 

  75. McMahon, C. L. et al. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav. Immun. 112, 188–205 (2023).

    Google Scholar 

  76. McMahon, C. L. et al. Prenatal SARS-CoV-2 infection results in neurodevelopmental and behavioral outcomes in mice. JCI Insight 9, e179068 (2024).

    Google Scholar 

  77. Coleon, A. et al. Hamsters with long COVID present distinct transcriptomic profiles associated with neurodegenerative processes in brainstem. Nat. Commun. 16, 6714 (2025).

    Google Scholar 

  78. Ruiz-Casas, C. et al. Long-term neurocognitive outcomes of SARS-CoV-2 infection in a hamster model. Front. Microbiol. 16, 1646616 (2025).

    Google Scholar 

  79. Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).

    Google Scholar 

  80. Shrim, A., Koren, G., Yudin, M. H., Farine, D. & Maternal Fetal Medicine, C. Management of varicella infection (chickenpox) in pregnancy. J. Obstet. Gynaecol. Can. 34, 287–292 (2012).

    Google Scholar 

  81. Khalil, A., Samara, A., Campbell, C. & Ladhani, S. N. Pregnant women and measles: we need to be vigilant during outbreaks. EClinicalMedicine 72, 102594 (2024).

    Google Scholar 

  82. Babarinsa, I. A., Okunoye, G. O. & Odukoya, O. Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV) infections in pregnancy—an overview. Eur. J. Obstet. Gynecol. Reprod. Biol. 263, 171–175 (2021).

    Google Scholar 

  83. Zhou, S. M. et al. COVID-19 and pregnancy: a comprehensive study of comorbidities and outcomes. BMC Public Health 24, 3157 (2024).

    Google Scholar 

  84. Shabil, M. et al. Maternal COVID-19 infection and risk of respiratory distress syndrome among newborns: a systematic review and meta-analysis. BMC Infect. Dis. 24, 1318 (2024).

    Google Scholar 

  85. Shook, L. L., Castro, V., Ibanez-Pintor, L., Perlis, R. H. & Edlow, A. G. Neurodevelopmental outcomes of 3-year-old children exposed to maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in utero. Obstet. Gynecol. 147, 11–20 (2026).

    Google Scholar 

  86. Shook, L. L. et al. Offspring cardiometabolic outcomes and postnatal growth trajectories after exposure to maternal SARS-CoV-2 infection. Obesity (Silver Spring) 32, 969–978 (2024).

    Google Scholar 

  87. Stenton, S. et al. SARS-COV2 placentitis and pregnancy outcome: a multicentre experience during the Alpha and early Delta waves of coronavirus pandemic in England. EClinicalMedicine 47, 101389 (2022).

    Google Scholar 

  88. Abdelnabi, R. et al. The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. Antivir. Res. 198, 105253 (2022).

    Google Scholar 

  89. Arabi, M. et al. Severity of the Omicron SARS-CoV-2 variant compared with the previous lineages: a systematic review. J. Cell. Mol. Med. 27, 1443–1464 (2023).

    Google Scholar 

  90. Cao, J. et al. Maternal and neonatal outcomes and clinical laboratory testing of pregnant women with COVID-19 during the BA.5.2/BF.7 surge. Virulence 15, 2360130 (2024).

    Google Scholar 

  91. Guo, L. et al. Durability and cross-reactive immune memory to SARS-CoV-2 in individuals 2 years after recovery from COVID-19: a longitudinal cohort study. Lancet Microbe 5, e24–e33 (2024).

    Google Scholar 

  92. Armengaud, J. B., Yzydorczyk, C., Siddeek, B., Peyter, A. C. & Simeoni, U. Intrauterine growth restriction: clinical consequences on health and disease at adulthood. Reprod. Toxicol. 99, 168–176 (2021).

    Google Scholar 

  93. Ristl, R. Sample Size Calculator https://homepage.univie.ac.at/robin.ristl/samplesize.php (2025).

  94. Chanut, F. J. & Williams, A. M. The Syrian Golden Hamster estrous cycle: unique characteristics, visual guide to staging, and comparison with the rat. Toxicol. Pathol. 44, 43–50 (2016).

    Google Scholar 

  95. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  96. Blaurock, C. et al. Compellingly high SARS-CoV-2 susceptibility of Golden Syrian hamsters suggests multiple zoonotic infections of pet hamsters during the COVID-19 pandemic. Sci. Rep. 12, 15069 (2022).

    Google Scholar 

  97. Kumpanenko, Y., Piessens, L., Neven, V., Dallmeier, K. & Alpizar, Y. A. PRSSLY-based molecular sex determination of Syrian hamster (Mesocricetus auratus) pups using placental tissues. Genes 17, 143 (2026).

  98. Ramakrishnan, M. A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 5, 85–86 (2016).

    Google Scholar 

  99. Gruber, A. D. et al. Standardization of reporting criteria for lung pathology in SARS-CoV-2-infected hamsters: what matters? Am. J. Respir. Cell Mol. Biol. 63, 856–859 (2020).

    Google Scholar 

  100. Natale, B. V. et al. Extracellular matrix influences gene expression and differentiation of mouse trophoblast stem cells. Stem Cells Dev. 32, 622–637 (2023).

    Google Scholar 

  101. Winship, A. L. et al. Interleukin-11 alters placentation and causes preeclampsia features in mice. Proc. Natl. Acad. Sci. USA 112, 15928–15933 (2015).

    Google Scholar 

  102. Elmore, S. A. et al. Histology Atlas of the developing mouse placenta. Toxicol. Pathol. 50, 60–117 (2022).

    Google Scholar 

  103. Lopez-Tello, J., Arias-Alvarez, M., Gonzalez-Bulnes, A. & Sferuzzi-Perri, A. N. Models of Intrauterine growth restriction and fetal programming in rabbits. Mol. Reprod. Dev. 86, 1781–1809 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Femke Vanzeebroeck, Valentijn Vergote, and the staff of the animal facility at the Rega Institute (KU Leuven) for their excellent support in establishing the hamster pregnancy model; to Elisabeth Heylen for her advice in the execution of experiments under controlled biosafety level 3 conditions; Katrien Luyten for her assistance in preparing placental slides for histological analysis. The authors are grateful to Prof. Joris Vriens and Dr. Bert Malengier-Devlies for their advice and helpful discussions. This work was supported by the Flemish Research Foundation (FWO, grant G0H3120N to H.V.V. and K.D.; Excellence of Science grant 40007527 to J.N. and K.D.), the KU Leuven Global Seed Fund (GSF/25/074 to Y.A.A. and K.D.), KU Leuven Internal Funding (C14/24/152 to K.D.C.), the European Union MSCA4Ukraine fellowship (grant 101110724 to Y.K.), and the European Union Horizon Europe Program (grant agreement 101137459 to K.D.). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union, HADEA, or the MSCA4Ukraine Consortium. Neither the European Union nor the granting authority, nor the MSCA4Ukraine Consortium as a whole, nor any individual member institutions of the MSCA4Ukraine Consortium can be held responsible for them. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Author information

Authors and Affiliations

  1. KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Division of Virology, Antiviral Drug & Vaccine Research, Laboratory of Molecular Vaccinology & Vaccine Discovery (MVVD), Leuven, Belgium

    Yana Kumpanenko, Elke Maas, Joran Degryse, Yeranddy A. Alpizar & Kai Dallmeier

  2. KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, Division of Translational Cell and Tissue Research, Leuven, Belgium

    Birgit Weynand

  3. Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel (VUB), Brussels, Belgium

    Hilde Van de Velde

  4. KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Virology, Antiviral Drug and Vaccine Research Group, Leuven, Belgium

    Johan Neyts

  5. VirusBank Platform, Leuven, Belgium

    Johan Neyts

  6. KU Leuven Department of Development and Regeneration, Implantation, Placentation and Pregnancy Research Group, Leuven, Belgium

    Katrien De Clercq

Authors
  1. Yana Kumpanenko
    View author publications

    Search author on:PubMed Google Scholar

  2. Elke Maas
    View author publications

    Search author on:PubMed Google Scholar

  3. Joran Degryse
    View author publications

    Search author on:PubMed Google Scholar

  4. Birgit Weynand
    View author publications

    Search author on:PubMed Google Scholar

  5. Hilde Van de Velde
    View author publications

    Search author on:PubMed Google Scholar

  6. Johan Neyts
    View author publications

    Search author on:PubMed Google Scholar

  7. Katrien De Clercq
    View author publications

    Search author on:PubMed Google Scholar

  8. Yeranddy A. Alpizar
    View author publications

    Search author on:PubMed Google Scholar

  9. Kai Dallmeier
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: Y.A.A., K.D., and H.V.V. Methodology: Y.K., E.M., and Y.A.A. Formal analysis: Y.K. and Y.A.A. Investigation: Y.K., E.M., J.D., K.D.C., B.W., and Y.A.A. Resources: J.N., K.D., and K.D.C. Data curation: Y.K. and Y.A.A. Writing—original draft preparation: Y.K., Y.A.A., and K.D. Writing—review and editing: all authors. Visualization: Y.K. and Y.A.A. Supervision: Y.A.A. and K.D. Project administration: Y.A.A. and K.D. Funding acquisition: Y.K., Y.A.A., H.V.V., and K.D. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yeranddy A. Alpizar or Kai Dallmeier.

Ethics declarations

Competing interests

K.D. and J.N. are mentioned as inventors on a patent application describing the construction and use of YF17D-based COVID-19 vaccines (EP4110380A1). The patent does not restrict academic research use of the described vaccine constructs; nor does it impose any restrictions on the publication, sharing, or reuse of the data presented in this study. All other authors declare to have no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Reporting Summary

Transparent Peer Review file

Source data

Source data file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumpanenko, Y., Maas, E., Degryse, J. et al. COVID-19-related inflammation of the placenta impedes fetal development in pregnant hamsters. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69360-w

Download citation

  • Received: 05 May 2025

  • Accepted: 28 January 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69360-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing