Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Single-cell multiomic human brain atlas reveals regulatory drivers of cortical regionality
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Single-cell multiomic human brain atlas reveals regulatory drivers of cortical regionality

  • Carter R. Palmer1,2 na1,
  • Jinghui Song  ORCID: orcid.org/0000-0003-2225-79773 na1,
  • Bing Yang4,5 na1,
  • Chien-Ju Chen3 na1,
  • Dinh Diep3,
  • Kimberly Conklin3,
  • Nongluk Plongthongkum3,
  • Hannah S. Indralingam4,5,
  • Christine S. Liu  ORCID: orcid.org/0000-0002-1239-46121,2,
  • Joshua Kurtz  ORCID: orcid.org/0000-0002-8208-88131,
  • Qiwen Hu6,
  • Linnea Ransom1,2,
  • Anis Shahnaee1,
  • Annie Hiniker7,
  • Rebecca D. Hodge  ORCID: orcid.org/0000-0002-5784-96688,
  • C. Dirk Keene  ORCID: orcid.org/0000-0002-5291-14699,
  • Ed Lein  ORCID: orcid.org/0000-0001-9012-65528,
  • Peter Kharchenko6,10,
  • Nathan R. Zemke4,5,
  • Jerold Chun  ORCID: orcid.org/0000-0003-3964-09211,
  • Bing Ren4,5 nAff11 &
  • …
  • Kun Zhang  ORCID: orcid.org/0000-0002-7596-52243,10 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cellular neuroscience
  • Genetics of the nervous system

Abstract

Distinct regional functionality of the human cortex is orchestrated by diverse cellular and molecular processes, yet the underlying regulatory mechanisms remain poorly understood. We performed multiomic single-cell and spatial characterization of nine regions of the human cortex to define the gene regulatory networks and transcription factors that govern cell-type and region specificity. With the combined data of over three million cells, two striking patterns of cortical neuron specialization were uncovered: a rostral-caudal spatial pattern of calcium regulatory machinery, and subunit switching of multiple signaling receptor families across the transmodal-sensory axis. Gene regulatory network analysis revealed putative transcriptional regulators of cortical neuron specialization with cell-type- and region-specific gene regulation patterns. While regionalization was observed in gene expression, chromatin accessibility, and spatial distributions, these modalities exhibited distinct cortical patterns. Our findings illuminate critical neuronal pathways that vary throughout the cortex and the gene regulatory networks that establish cortical regionalization in the human brain.

Data availability

Data generated via SNARE-Seq2 can be found on the NEMO archive via the following link: https://data.nemoarchive.org/biccn/lab/zhang_kun/multimodal/sncell/ Associated metadata can be found in data S1. Data generated via DART-FISH is uploaded to the BIL archive and is freely accessible at the following https://doi.org/10.35077/g.1179. Source data are provided with this paper.

Code availability

Code used for this manuscript can be found at the following github repository56: https://github.com/ypauling/human_brain_atlas_cortex_regionality.

References

  1. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    Google Scholar 

  2. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Google Scholar 

  3. Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).

    Google Scholar 

  4. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

    Google Scholar 

  5. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Google Scholar 

  6. Jorstad, N. L. et al. Comparative transcriptomics reveals human-specific cortical features. Science 382, eade9516 (2023).

    Google Scholar 

  7. Li, Y. E. et al. An atlas of gene regulatory elements in adult mouse cerebrum. Nature 598, 129–136 (2021).

    Google Scholar 

  8. Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 598, 120–128 (2021).

    Google Scholar 

  9. Tian, W. et al. Single-cell DNA methylation and 3D genome architecture in the human brain. Science 382, eadf5357 (2023).

    Google Scholar 

  10. Li, Y. E. et al. A comparative atlas of single-cell chromatin accessibility in the human brain. Science 382, eadf7044 (2023).

    Google Scholar 

  11. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Google Scholar 

  12. Kanatani, S. et al. Whole-brain spatial transcriptional analysis at cellular resolution. Science 386, 907–915 (2024).

    Google Scholar 

  13. Sydnor, V. J. et al. Intrinsic activity development unfolds along a sensorimotor-association cortical axis in youth. Nat. Neurosci. 26, 638–649 (2023).

    Google Scholar 

  14. Goulas, A. et al. The natural axis of transmitter receptor distribution in the human cerebral cortex. Proc. Natl. Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2020574118 (2021).

  15. Plongthongkum, N., Diep, D., Chen, S., Lake, B. B. & Zhang, K. Scalable dual-omics profiling with single-nucleus chromatin accessibility and mRNA expression sequencing 2 (SNARE-seq2). Nat. Protoc. 16, 4992–5029 (2021).

    Google Scholar 

  16. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86-102, (2021).

  17. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Google Scholar 

  18. Chen, Y., Chen, L., Lun, A. T. L., Baldoni, P. L. & Smyth, G. K. edgeR v4: powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. Nucleic Acids Res. 53, https://doi.org/10.1093/nar/gkaf018 (2025).

  19. Greg, F. et al. MAST: a flexible stastical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 278 (2015).

  20. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb.) 2, 100141 (2021).

    Google Scholar 

  21. Bhaduri, A. S.-E. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021).

    Google Scholar 

  22. Emani, P. S. et al. Single-cell genomics and regulatory networks for 388 human brains. Science 384, eadi5199 (2024).

    Google Scholar 

  23. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Google Scholar 

  24. Cao, Z. J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458–1466 (2022).

    Google Scholar 

  25. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Google Scholar 

  26. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet 47, 291–295 (2015).

    Google Scholar 

  27. Kalhor, K. et al. Mapping human tissues with highly multiplexed RNA in situ hybridization. Nat. Commun. 15, 2511 (2024).

    Google Scholar 

  28. Zhang, Y. et al. Gene panel selection for targeted spatial transcriptomics. Genome Biol. 25, 35 (2024).

    Google Scholar 

  29. Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020).

    Google Scholar 

  30. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Google Scholar 

  31. Vogel, J. W. et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med 27, 871–881 (2021).

    Google Scholar 

  32. Horsager, J. et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143, 3077–3088 (2020).

    Google Scholar 

  33. Borghammer, P. et al. A postmortem study suggests a revision of the dual-hit hypothesis of Parkinson’s disease. NPJ Parkinsons Dis. 8, 166 (2022).

    Google Scholar 

  34. Gandal, M. J. et al. Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD. Nature 611, 532–539 (2022).

    Google Scholar 

  35. Bravo González-Blas, C. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 1355–1367 (2023).

    Google Scholar 

  36. Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 24, 276–287 (2021).

    Google Scholar 

  37. Mathys, H. et al. Single-cell multiregion dissection of Alzheimer’s disease. Nature 632, 858–868 (2024).

    Google Scholar 

  38. Webber, E. K., Fivaz, M., Stutzmann, G. E. & Griffioen, G. Cytosolic calcium: Judge, jury and executioner of neurodegeneration in Alzheimer’s disease and beyond. Alzheimers Dement 19, 3701–3717 (2023).

    Google Scholar 

  39. Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. & Traynelis, S. F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563, 345–358 (2005).

    Google Scholar 

  40. Clarke, R. J. & Johnson, J. W. NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. J. Neurosci. 26, 5825–5834 (2006).

    Google Scholar 

  41. Luo, A. C. et al. Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy. Nat. Commun. 15, 3511 (2024).

    Google Scholar 

  42. Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 25, 1569–1581 (2022).

    Google Scholar 

  43. Pan, Y. et al. Association of genetic variants of GRIN2B with autism. Sci. Rep. 5, 8296 (2015).

    Google Scholar 

  44. Hu, C., Chen, W., Myers, S. J., Yuan, H. & Traynelis, S. F. Human GRIN2B variants in neurodevelopmental disorders. J. Pharm. Sci. 132, 115–121 (2016).

    Google Scholar 

  45. Sabo, S. L., Lahr, J. M., Offer, M., Weekes, A. & Sceniak, M. P. GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms. Front Synaptic Neurosci. 14, 1090865 (2022).

    Google Scholar 

  46. Harris, H. K. et al. Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior. Genet Med 23, 1028–1040 (2021).

    Google Scholar 

  47. Lai, J. et al. Multi-omic analysis of the ciliogenic transcription factor RFX3 reveals a role in promoting activity-dependent responses via enhancing CREB binding in human neurons. bioRxiv https://doi.org/10.1101/2025.02.27.640588 (2025).

    Google Scholar 

  48. Zollino, M. et al. Diagnosis and management in Pitt-Hopkins syndrome: First international consensus statement. Clin. Genet 95, 462–478 (2019).

    Google Scholar 

  49. Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4, 36 (2013).

    Google Scholar 

  50. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303.3997 (2013).

  51. Marstal, K., Berendsen, F., Staring, M. & Klein, S. in 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 574-582.

  52. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  53. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    Google Scholar 

  54. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Google Scholar 

  55. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    Google Scholar 

  56. Yang, B., Song, J. & Chen, C. J. Single-cell multiomic human brain atlas reveals regulatory drivers of cortical regionality. human_brain_atlas_cortex_regionality, (2025).

Download references

Acknowledgements

We would like to thank the research brain donors and families who shared the precious brain materials used in these studies for their deep contributions to science. We would like to thank the University of Washington Biorepository and Integrated Neuropathology (BRaIN) Laboratory. We would like to thank the Snohomish, Pierce, and King County Medical Examiner offices for their collaboration and support of the Pacific Northwest Brain Donor Network. We would like to thank Lisa Keene, Aimee Schantz, Emily Ragaglia, and the staff of the BRaIN Lab for outstanding research coordination and technical support and Dr. William Romanow for his scientific and technical support. Figures 1A, 4A, 5A, and S11C were created with the help of Biorender.com. The work was supported by the following grants: National Institutes of Health grant U01MH114828-01A1 (K.Z., P.K., B.R., J.C.), National Institutes of Health grant R01 AG065541 (J.C.), National Institutes of Health grant R01 AG071465 (J.C.), National Institutes of Health grant P30 AG066509 (C.D.K.), National Institutes of Health grant U19 AG072458 (C.D.K.), National Institutes of Health grant U19 AG060909 (C.D.K.), Allen Institute of Brain Sciences (C.D.K.), Nancy and Buster Alvord Endowment (C.D.K.).

Author information

Author notes
  1. Bing Ren

    Present address: New York Genome Center, New York, NY, USA

  2. These authors contributed equally: Carter R. Palmer, Jinghui Song, Bing Yang, Chien-Ju Chen.

Authors and Affiliations

  1. Center for Neurological Diseases, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA

    Carter R. Palmer, Christine S. Liu, Joshua Kurtz, Linnea Ransom, Anis Shahnaee & Jerold Chun

  2. Biomedical Sciences Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA

    Carter R. Palmer, Christine S. Liu & Linnea Ransom

  3. Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA

    Jinghui Song, Chien-Ju Chen, Dinh Diep, Kimberly Conklin, Nongluk Plongthongkum & Kun Zhang

  4. Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA

    Bing Yang, Hannah S. Indralingam, Nathan R. Zemke & Bing Ren

  5. Center for Epigenomics, University of California, San Diego, School of Medicine, La Jolla, CA, USA

    Bing Yang, Hannah S. Indralingam, Nathan R. Zemke & Bing Ren

  6. Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

    Qiwen Hu & Peter Kharchenko

  7. Department of Pathology, University of Southern California, Los Angeles, CA, USA

    Annie Hiniker

  8. Allen Institute for Brain Science, Seattle, WA, USA

    Rebecca D. Hodge & Ed Lein

  9. Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA

    C. Dirk Keene

  10. San Diego Institute of Science, Altos Labs, San Diego, CA, USA

    Peter Kharchenko & Kun Zhang

Authors
  1. Carter R. Palmer
    View author publications

    Search author on:PubMed Google Scholar

  2. Jinghui Song
    View author publications

    Search author on:PubMed Google Scholar

  3. Bing Yang
    View author publications

    Search author on:PubMed Google Scholar

  4. Chien-Ju Chen
    View author publications

    Search author on:PubMed Google Scholar

  5. Dinh Diep
    View author publications

    Search author on:PubMed Google Scholar

  6. Kimberly Conklin
    View author publications

    Search author on:PubMed Google Scholar

  7. Nongluk Plongthongkum
    View author publications

    Search author on:PubMed Google Scholar

  8. Hannah S. Indralingam
    View author publications

    Search author on:PubMed Google Scholar

  9. Christine S. Liu
    View author publications

    Search author on:PubMed Google Scholar

  10. Joshua Kurtz
    View author publications

    Search author on:PubMed Google Scholar

  11. Qiwen Hu
    View author publications

    Search author on:PubMed Google Scholar

  12. Linnea Ransom
    View author publications

    Search author on:PubMed Google Scholar

  13. Anis Shahnaee
    View author publications

    Search author on:PubMed Google Scholar

  14. Annie Hiniker
    View author publications

    Search author on:PubMed Google Scholar

  15. Rebecca D. Hodge
    View author publications

    Search author on:PubMed Google Scholar

  16. C. Dirk Keene
    View author publications

    Search author on:PubMed Google Scholar

  17. Ed Lein
    View author publications

    Search author on:PubMed Google Scholar

  18. Peter Kharchenko
    View author publications

    Search author on:PubMed Google Scholar

  19. Nathan R. Zemke
    View author publications

    Search author on:PubMed Google Scholar

  20. Jerold Chun
    View author publications

    Search author on:PubMed Google Scholar

  21. Bing Ren
    View author publications

    Search author on:PubMed Google Scholar

  22. Kun Zhang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: C.P., J.S., B.Y., C.J.C., N.Z., J.C., P.K., B.R., K.Z. Methodology: C.P., J.S., C.J.C., K.C., N.P., D.D., Q.H., Software: J.S., B.Y., C.J.C., Q.H., Formal Analysis: C.P., J.S., B.Y., C.J.C., Data Curation: J.S., B.Y., C.J.C., Investigation: C.P., J.S., C.J.C., K.C., N.P., D.D., H.I., A.H., C.S.L., J.K., Q.H., R.H. Visualization: C.P., J.S., B.Y., C.J.C., N.Z., L.R., A.S., Funding acquisition: K.Z., J.C., P.K., B.R., Project administration: C.P., J.S., N.Z., C.S.L., R.D.H., C.D.K., E.L., J.C., B.R., K.Z., Supervision: N.Z., P.K., J.C., B.R., K.Z. Writing – original draft: C.P., Writing – review & editing: C.P., J.S., B.Y., C.J.C., N.Z., C.S.L., L.R., A.S., P.K., J.C., B.R., K.Z.

Corresponding authors

Correspondence to Nathan R. Zemke, Jerold Chun, Bing Ren or Kun Zhang.

Ethics declarations

Competing interests

B.R. is a co-founder of Epigenome Technologies, and has equity in Arima Genomics. J.C. has an employment relationship with Neurocrine Biosciences Inc., a company that may potentially benefit from the research results. Dr. Chun’s relationship with Neurocrine Biosciences, Inc. has been reviewed and approved by Sanford Burnham Prebys Medical Discovery Institute in accordance with its Conflict of Interest Policies. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Supplementary Data 10

Supplementary Data 11

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmer, C.R., Song, J., Yang, B. et al. Single-cell multiomic human brain atlas reveals regulatory drivers of cortical regionality. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69368-2

Download citation

  • Received: 08 July 2025

  • Accepted: 30 January 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69368-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing