Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Structural and molecular basis for allosteric regulation and catalytic coupling of human phosphoribosylformylglycinamidine synthase
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Structural and molecular basis for allosteric regulation and catalytic coupling of human phosphoribosylformylglycinamidine synthase

  • Nandini Sharma  ORCID: orcid.org/0000-0003-4053-21861,
  • Weijie Zhou2 nAff3 &
  • Jarrod B. French  ORCID: orcid.org/0000-0002-6762-13091 

Nature Communications , Article number:  (2026) Cite this article

  • 1991 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cryoelectron microscopy
  • Enzyme mechanisms
  • Hydrolases

Abstract

Purine nucleotides are ubiquitous molecules essential for all life. The de novo biosynthesis of purines is a metabolic dependency that is frequently reprogrammed in cancers and is a well-established target for chemotherapies, immune modulation and antivirals. Here, we report cryo-electron microscopy structures of the multi-domain human phosphoribosylformylglycinamidine synthase, a central purine biosynthetic enzyme and foundational feature of the purinosome metabolon. These data capture, the proposed iminophosphate intermediate and provide the structural elucidation of an ammonia channel connecting the active sites of the glutaminase and synthase domains. Analysis of this series of structures and the accompanying biochemical data also reveal the molecular features and transient conformational changes that underlie allosteric regulation and catalytic coupling of the domains. This data resolves several longstanding mechanistic questions about this enzyme class and provides a strong foundation for therapeutic development.

Similar content being viewed by others

Guanine is an inhibitor of c-jun terminal kinases

Article Open access 11 August 2025

A monolithic single-chip point-of-care platform for metabolomic prostate cancer detection

Article Open access 05 March 2021

Allosteric inhibition of PPM1D serine/threonine phosphatase via an altered conformational state

Article Open access 30 June 2022

Data availability

The image files and processed data for the reported macromolecular structures are available in the RSCB PDB and EMDB under the accession codes: 9N9W and EMD-49179; 9NAL and EMD-49198; 9NB3 and EMD-49207. PDB codes of previously published structures used in this study are 3UGJ, 1T3T, 2HS4 and 3UMM. All data needed to evaluate the conclusions in the paper are present in the manuscript, Supplementary Information file, and/or the accompanying source data file. Additional data related to this paper may be requested from the authors. Source Data is provided as a Source Data file. Source data are provided with this paper.

References

  1. Cronstein, B. N. & Angle, S. R. Purines and adenosine receptors in osteoarthritis. Biomolecules 13, 1760 (2023).

  2. Wang, Y. et al. Cross talk between nucleotide synthesis pathways with cellular immunity in constraining hepatitis E virus replication. Antimicrob Agents Chemother. 60, 2834–2848 (2016).

    Google Scholar 

  3. Yamada, S., Mizukoshi, T., Sato, A. & Sakakibara, S. I. Purinosomes and purine metabolism in mammalian neural development: a review. Acta Histochem. Cytochem. 57, 89–100 (2024).

    Google Scholar 

  4. Zhang, Y., Morar, M. & Ealick, S. E. Structural biology of the purine biosynthetic pathway. Cell Mol. Life Sci. 65, 3699–3724 (2008).

    Google Scholar 

  5. Biscaglia, S., Ceconi, C., Malagu, M., Pavasini, R. & Ferrari, R. Uric acid and coronary artery disease: an elusive link deserving further attention. Int J. Cardiol. 213, 28–32 (2016).

    Google Scholar 

  6. Daniels, S. D. & Boison, D. Bipolar mania and epilepsy pathophysiology and treatment may converge in purine metabolism: a new perspective on available evidence. Neuropharmacology 241, 109756 (2023).

    Google Scholar 

  7. Agarwal, A., Banerjee, A. & Banerjee, U. C. Xanthine oxidoreductase: a journey from purine metabolism to cardiovascular excitation-contraction coupling. Crit. Rev. Biotechnol. 31, 264–280 (2011).

    Google Scholar 

  8. Moriwaki, Y., Yamamoto, T. & Higashino, K. Enzymes involved in purine metabolism-a review of histochemical localization and functional implications. Histol. Histopathol. 14, 1321–1340 (1999).

    Google Scholar 

  9. Cronstein, B. N. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol. Rev. 57, 163–172 (2005).

    Google Scholar 

  10. Parker, W. B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109, 2880–2893 (2009).

    Google Scholar 

  11. Carrera, C. J., Saven, A. & Piro, L. D. Purine metabolism of lymphocytes. Targets for chemotherapy drug development. Hematol. Oncol. Clin. North Am. 8, 357–381 (1994).

    Google Scholar 

  12. Cheviet, T., Lefebvre-Tournier, I., Wein, S. & Peyrottes, S. Plasmodium purine metabolism and its inhibition by nucleoside and nucleotide analogues. J. Med. Chem. 62, 8365–8391 (2019).

    Google Scholar 

  13. Hung, M. H. et al. Purine anabolism creates therapeutic vulnerability in hepatocellular carcinoma through m 6 A-mediated epitranscriptomic regulation. Hepatology 78, 1462–1477 (2023).

    Google Scholar 

  14. Mullen, N. J. & Singh, P. K. Nucleotide metabolism: a pan-cancer metabolic dependency. Nat. Rev. Cancer 23, 275–294 (2023).

    Google Scholar 

  15. Villa, E., Ali, E. S., Sahu, U. & Ben-Sahra, I. Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers 11, 688 (2019).

  16. Shi, D. D., Savani, M. R., Abdullah, K. G. & McBrayer, S. K. Emerging roles of nucleotide metabolism in cancer. Trends Cancer 9, 624–635 (2023).

    Google Scholar 

  17. Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).

    Google Scholar 

  18. Ali, E. S. & Ben-Sahra, I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol. 33, 950–966 (2023).

    Google Scholar 

  19. Biancur, D. E. et al. Functional genomics identifies metabolic vulnerabilities in pancreatic cancer. Cell Metab. 33, 199–210.e198 (2021).

    Google Scholar 

  20. Koundinya, M. et al. Dependence on the pyrimidine biosynthetic enzyme DHODH is a synthetic lethal vulnerability in mutant KRAS-driven cancers. Cell Chem. Biol. 25, 705–717.e711 (2018).

    Google Scholar 

  21. Li, L. et al. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci. Transl. Med. 11, eaaw7852 (2019).

  22. Mathur, D. et al. PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition. Cancer Discov. 7, 380–390 (2017).

    Google Scholar 

  23. Santana-Codina, N. et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat. Commun. 9, 4945 (2018).

    Google Scholar 

  24. Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167, 171–186 e115 (2016).

    Google Scholar 

  25. Wang, X. et al (2019) Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci. Transl. Med. 11, eaau4972 (2019).

  26. Zhu, X. G. et al. Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells. Cell Metab. 33, 211–221.e216 (2021).

    Google Scholar 

  27. Yamaoka, T. et al. Amidophosphoribosyltransferase limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis. J. Biol. Chem. 272, 17719–17725 (1997).

    Google Scholar 

  28. Yamaoka, T. et al. Feedback inhibition of amidophosphoribosyltransferase regulates the rate of cell growth via purine nucleotide, DNA, and protein syntheses. J. Biol. Chem. 276, 21285–21291 (2001).

    Google Scholar 

  29. Goswami, M. T. et al. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer. Oncotarget 6, 23445–23461 (2015).

    Google Scholar 

  30. Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015).

    Google Scholar 

  31. Chitrakar, I., Kim-Holzapfel, D. M., Zhou, W. & French, J. B. Higher order structures in purine and pyrimidine metabolism. J. Struct. Biol. 197, 354–364 (2017).

    Google Scholar 

  32. Zhao, H., French, J. B., Fang, Y. & Benkovic, S. J. The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem. Commun. 49, 4444–4452 (2013).

    Google Scholar 

  33. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    Google Scholar 

  34. Keller, K. E., Doctor, Z. M., Dwyer, Z. W. & Lee, Y. S. SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol. Cell 53, 700–709 (2014).

    Google Scholar 

  35. Keller, K. E., Tan, I. S. & Lee, Y. S. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338, 1069–1072 (2012).

    Google Scholar 

  36. Towler, M. C. & Hardie, D. G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328–341 (2007).

    Google Scholar 

  37. Soflaee, M. H. et al. Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nat. Commun. 13, 2698 (2022).

    Google Scholar 

  38. An, S., Kumar, R., Sheets, E. D. & Benkovic, S. J. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320, 103–106 (2008).

    Google Scholar 

  39. An, S., Kyoung, M., Allen, J. J., Shokat, K. M. & Benkovic, S. J. Dynamic regulation of a metabolic multi-enzyme complex by protein kinase CK2. J. Biol. Chem. 285, 11093–11099 (2010).

    Google Scholar 

  40. French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733–737 (2016).

    Google Scholar 

  41. Zhao, H. et al. Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis. J. Biol. Chem. 290, 6705–6713 (2015).

    Google Scholar 

  42. Sharma, N., Otsuka, Y., Scampavia, L., Spicer, T. P. & French, J. B. A high throughput assay for phosphoribosylformylglycinamidine synthase. SLAS Discov Adv. Life Sci. R. D. 31, 100212 (2025).

    Google Scholar 

  43. Ali, E. S. et al. ERK2 phosphorylates PFAS to mediate posttranslational control of de novo purine synthesis. Mol. Cell 78, 1178–1191.e1176 (2020).

    Google Scholar 

  44. Kim, J. H., Krahn, J. M., Tomchick, D. R., Smith, J. L. & Zalkin, H. Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site. J. Biol. Chem. 271, 15549–15557 (1996).

    Google Scholar 

  45. Smith, J. L. et al. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science 264, 1427–1433 (1994).

    Google Scholar 

  46. Zhou, G., Smith, J. L. & Zalkin, H. Binding of purine nucleotides to two regulatory sites results in synergistic feedback inhibition of glutamine 5-phosphoribosylpyrophosphate amidotransferase. J. Biol. Chem. 269, 6784–6789 (1994).

    Google Scholar 

  47. An, S., Deng, Y., Tomsho, J. W., Kyoung, M. & Benkovic, S. J. Microtubule-assisted mechanism for functional metabolic macromolecular complex formation. Proc. Natl. Acad. Sci. USA 107, 12872–12876 (2010).

    Google Scholar 

  48. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Google Scholar 

  49. Koshland, D. E. Jr Conformational changes: how small is big enough?. Nat. Med. 4, 1112–1114 (1998).

    Google Scholar 

  50. Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    Google Scholar 

  51. He, J., Zou, L. N., Pareek, V. & Benkovic, S. J. Multienzyme interactions of the de novo purine biosynthetic protein PAICS facilitate purinosome formation and metabolic channeling. J. Biol. Chem. 298, 101853 (2022).

    Google Scholar 

  52. Shon, H. et al. Evidence supporting substrate channeling between domains of human PAICS: a time-course analysis of (13)c-bicarbonate incorporation. Biochemistry 61, 575–582 (2022).

    Google Scholar 

  53. Krahn, J. M. et al. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry 36, 11061–11068 (1997).

    Google Scholar 

  54. Sweetlove, L. J. & Fernie, A. R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat. Commun. 9, 2136 (2018).

    Google Scholar 

  55. Morar, M., Anand, R., Hoskins, A. A., Stubbe, J. & Ealick, S. E. Complexed structures of formylglycinamide ribonucleotide amidotransferase from Thermotoga maritima describe a novel ATP binding protein superfamily. Biochemistry 45, 14880–14895 (2006).

    Google Scholar 

  56. Anand, R., Hoskins, A. A., Stubbe, J. & Ealick, S. E. Domain organization of Salmonella typhimurium formylglycinamide ribonucleotide amidotransferase revealed by X-ray crystallography. Biochemistry 43, 10328–10342 (2004).

    Google Scholar 

  57. Sharma, N. et al. Role of allosteric switches and adaptor domains in long-distance cross-talk and transient tunnel formation. Sci. Adv. 6, eaay7919 (2020).

    Google Scholar 

  58. Schendel, F. J., Mueller, E., Stubbe, J., Shiau, A. & Smith, J. M. Formylglycinamide ribonucleotide synthetase from Escherichia coli: cloning, sequencing, overproduction, isolation, and characterization. Biochemistry 28, 2459–2471 (1989).

    Google Scholar 

  59. Schendel, F. J. & Stubbe, J. Substrate specificity of formylglycinamidine synthetase. Biochemistry 25, 2256–2264 (1986).

    Google Scholar 

  60. Tanwar, A. S., Morar, M., Panjikar, S. & Anand, R. Formylglycinamide ribonucleotide amidotransferase from Salmonella typhimurium: role of ATP complexation and the glutaminase domain in catalytic coupling. Acta Crystallogr. D. Biol. Crystallogr. 68, 627–636 (2012).

    Google Scholar 

  61. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Google Scholar 

  62. Hoskins, A. A., Anand, R., Ealick, S. E. & Stubbe, J. The formylglycinamide ribonucleotide amidotransferase complex from Bacillus subtilis: metabolite-mediated complex formation. Biochemistry 43, 10314–10327 (2004).

    Google Scholar 

  63. Mouilleron, S. & Golinelli-Pimpaneau, B. Conformational changes in ammonia-channeling glutamine amidotransferases. Curr. Opin. Struct. Biol. 17, 653–664 (2007).

    Google Scholar 

  64. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Google Scholar 

  65. Sharma, N., Singh, S., Tanwar, A. S., Mondal, J. & Anand, R. Mechanism of coordinated gating and signal transduction in purine biosynthetic enzyme formylglycinamidine synthetase. ACS Catal. 12, 1930–1944 (2022).

    Google Scholar 

  66. Li, C., Kappock, T. J., Stubbe, J., Weaver, T. M. & Ealick, S. E. X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 A resolution. Structure 7, 1155–1166 (1999).

    Google Scholar 

  67. Westheimer, F. H. Monomeric meta-phosphates. Chem. Rev. 81, 313–326 (1981).

    Google Scholar 

  68. Massiere, F. & Badet-Denisot, M. A. The mechanism of glutamine-dependent amidotransferases. Cell Mol. Life Sci. 54, 205–222 (1998).

    Google Scholar 

  69. Rivalta, I. et al. Allosteric pathways in imidazole glycerol phosphate synthase. Proc. Natl. Acad. Sci. USA 109, E1428–E1436 (2012).

    Google Scholar 

  70. Wurm, J. P. et al. Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex. Nat. Commun. 12, 2748 (2021).

    Google Scholar 

  71. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Google Scholar 

  72. Tanwar, A. S., Sindhikara, D. J., Hirata, F. & Anand, R. Determination of the formylglycinamide ribonucleotide amidotransferase ammonia pathway by combining 3D-RISM theory with experiment. ACS Chem. Biol. 10, 698–704 (2015).

    Google Scholar 

  73. Mouilleron, S., Badet-Denisot, M. A. & Golinelli-Pimpaneau, B. Glutamine binding opens the ammonia channel and activates glucosamine-6P synthase. J. Biol. Chem. 281, 4404–4412 (2006).

    Google Scholar 

  74. Teplyakov, A., Obmolova, G., Badet, B. & Badet-Denisot, M. A. Channeling of ammonia in glucosamine-6-phosphate synthase. J. Mol. Biol. 313, 1093–1102 (2001).

    Google Scholar 

  75. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  76. Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Google Scholar 

  77. Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Google Scholar 

  78. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    Google Scholar 

  79. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D. Biol. Crystallogr. 75, 861–877 (2019).

    Google Scholar 

  80. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Google Scholar 

  81. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Google Scholar 

  82. Bernt, E. & Bergmeyer, H. U. l-Glutamate UV-assay with gutamate dehydrogenase and NAD. Methods of Enzymatic Analysis 2nd edn (Academic Press, 1974).

  83. Bratton, A. C. & Marshall, E. K. A new coupling component for sulfanilamide determination. J. Biol. Chem. 128, 537–550 (1939).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff at The Hormel Institute Cryo-EM core facility, particularly Janarjan Bhandari, for their help with sample preparation and data collection, as well as all members of the J.B.F. lab for helpful discussions. This work was supported by the National Institute for General Medical Sciences and the National Cancer Institute, of the National Institutes of Health, under grant numbers R35GM124898 and R01CA299056. Partial support for N.S. was provided by an Eagles Fellowship and Paint the Town Pink grant from The Hormel Institute. The funding agencies played no role in the design or execution of this work.

Author information

Author notes
  1. Weijie Zhou

    Present address: Merck, Cambridge, MA, 02141, USA

Authors and Affiliations

  1. The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA

    Nandini Sharma & Jarrod B. French

  2. Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA

    Weijie Zhou

Authors
  1. Nandini Sharma
    View author publications

    Search author on:PubMed Google Scholar

  2. Weijie Zhou
    View author publications

    Search author on:PubMed Google Scholar

  3. Jarrod B. French
    View author publications

    Search author on:PubMed Google Scholar

Contributions

N.S. Methodology, investigation, formal analysis, validation, writing —preliminary draft, review and editing. W.Z. Methodology, investigation. J.B.F. Conceptualization and design, methodology, supervision, investigation, writing—original draft, review and editing, resources, project leadership, funding acquisition.

Corresponding author

Correspondence to Jarrod B. French.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Zhou, W. & French, J.B. Structural and molecular basis for allosteric regulation and catalytic coupling of human phosphoribosylformylglycinamidine synthase. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69423-y

Download citation

  • Received: 06 August 2025

  • Accepted: 02 February 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69423-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing