Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Feeding decision-making by a single neuron via disparate neurotransmitters
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Feeding decision-making by a single neuron via disparate neurotransmitters

  • Doruk Savaş  ORCID: orcid.org/0000-0003-4282-15711,2,3,
  • Angel M. Okoro1,2,
  • Rareș A. Moșneanu1,2,
  • Anthony M. Crown1,2 nAff5,
  • Zeyu Chang  ORCID: orcid.org/0009-0002-6382-30074,
  • Rebecca Siegel1,2 nAff6,
  • Altar Sorkaç  ORCID: orcid.org/0000-0002-0739-63141,2,
  • Meet Zandawala  ORCID: orcid.org/0000-0001-6498-22081,2,3 &
  • …
  • Gilad Barnea  ORCID: orcid.org/0000-0001-6842-34541,2 

Nature Communications , Article number:  (2026) Cite this article

  • 1950 Accesses

  • 3 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Feeding behaviour
  • Gustatory system
  • Sensory processing

Abstract

Animals use gustatory information to decide whether to ingest nutritious substances or avoid toxic ones. Although certain neurons in the gustatory circuits respond to both aversive and appetitive signals, how these neurons resolve inputs with opposing valences is unknown. Here, we examine how the Drosophila melanogaster neuropeptide leucokinin (LK) affects gustatory information processing to elicit the appropriate feeding behaviors. We identify the subesophageal LK neurons (SELKs) as downstream synaptic partners of gustatory receptor neurons and show that these two groups are functionally connected. We then show that SELKs affect bitter avoidance through LK release and food intake in an acetylcholine-dependent manner. Our study uncovers a mechanism whereby strong activation of SELKs results in LK release, leading to feeding suppression, while weak activation results in acetylcholine-dependent feeding promotion. Thus, our results reveal that a single pair of neurons, SELKs, differentially controls opposing feeding behaviors via distinct neurotransmitters.

Similar content being viewed by others

Artificial sweeteners differentially activate sweet and bitter gustatory neurons in Drosophila

Article Open access 01 July 2025

Feeding state-dependent neuropeptidergic modulation of reciprocally interconnected inhibitory neurons biases sensorimotor decisions in Drosophila

Article Open access 02 September 2025

A Drosophila computational brain model reveals sensorimotor processing

Article Open access 02 October 2024

Data availability

The behavioral and functional imaging data generated in this study have been deposited in the Figshare database under accession code https://doi.org/10.6084/m9.figshare.31049989. Source data are provided as a Source data file. Source data are provided with this paper.

Code availability

Custom codes used for data analyses are available at: https://github.com/Zandawala-lab/Savas-et-al-2025-Drosophila-SELK.

References

  1. Rosenstein, D. & Oster, H. Differential facial responses to four basic tastes in newborns. Child Dev. 59, 1555–1568 (1988).

    Google Scholar 

  2. Clyne, P. J., Warr, C. G. & Carlson, J. R. Candidate taste receptors in Drosophila. Science 287, 1830–1834 (2000).

    Google Scholar 

  3. Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001).

    Google Scholar 

  4. Accolla, R., Bathellier, B., Petersen, C. C. & Carleton, A. Differential spatial representation of taste modalities in the rat gustatory cortex. J. Neurosci. 27, 1396–1404 (2007).

    Google Scholar 

  5. Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006).

    Google Scholar 

  6. Dethier, V. G. The Hungry Fly: A Physiological Study of the Behavior Associated with Feeding (Harvard University Press, 1976).

  7. Dahanukar, A., Lei, Y. T., Kwon, J. Y. & Carlson, J. R. Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503–516 (2007).

    Google Scholar 

  8. Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D. & Carlson, J. R. The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258–272 (2011).

    Google Scholar 

  9. Meunier, N., Marion-Poll, F., Rospars, J. P. & Tanimura, T. Peripheral coding of bitter taste in Drosophila. J. Neurobiol. 56, 139–152 (2003).

    Google Scholar 

  10. Inagaki, H. K., Panse, K. M. & Anderson, D. J. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron 84, 806–820 (2014).

    Google Scholar 

  11. Devineni, A. V., Sun, B., Zhukovskaya, A. & Axel, R. Acetic acid activates distinct taste pathways in Drosophila to elicit opposing, state-dependent feeding responses. Elife 8, https://doi.org/10.7554/eLife.47677 (2019).

  12. Sterne, G. R., Otsuna, H., Dickson, B. J. & Scott, K. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. Elife 10, https://doi.org/10.7554/eLife.71679 (2021).

  13. Shiu, P. K., Sterne, G. R., Engert, S., Dickson, B. J. & Scott, K. Taste quality and hunger interactions in a feeding sensorimotor circuit. Elife 11, https://doi.org/10.7554/eLife.79887 (2022).

  14. Scott, K. Gustatory processing in Drosophila melanogaster. Annu. Rev. Entomol. 63, 15–30 (2018).

    Google Scholar 

  15. Kendroud, S. et al. Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments. J. Comp. Neurol. 526, 33–58 (2018).

    Google Scholar 

  16. Snell, N. J. et al. Complex representation of taste quality by second-order gustatory neurons in Drosophila. Curr. Biol. 32, 3758–3772 (2022).

    Google Scholar 

  17. Chu, B., Chui, V., Mann, K. & Gordon, M. D. Presynaptic gain control drives sweet and bitter taste integration in Drosophila. Curr. Biol. 24, 1978–1984 (2014).

    Google Scholar 

  18. Reiter, S., Campillo Rodriguez, C., Sun, K. & Stopfer, M. Spatiotemporal coding of individual chemicals by the gustatory system. J. Neurosci. 35, 12309–12321 (2015).

    Google Scholar 

  19. Liu, H. & Fontanini, A. State dependency of chemosensory coding in the gustatory thalamus (VPMpc) of alert rats. J. Neurosci. 35, 15479–15491 (2015).

    Google Scholar 

  20. Sweazey, R. D. & Smith, D. V. Convergence onto hamster medullary taste neurons. Brain Res. 408, 173–184 (1987).

    Google Scholar 

  21. Nassel, D. R. & Zandawala, M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog. Neurobiol. 179, 101607 (2019).

    Google Scholar 

  22. Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1–11 (2012).

    Google Scholar 

  23. Bargmann, C. I. & Marder, E. From the connectome to brain function. Nat. Methods 10, 483–490 (2013).

    Google Scholar 

  24. Cavey, M., Collins, B., Bertet, C. & Blau, J. Circadian rhythms in neuronal activity propagate through output circuits. Nat. Neurosci. 19, 587–595 (2016).

    Google Scholar 

  25. Yurgel, M. E. et al. A single pair of leucokinin neurons are modulated by feeding state and regulate sleep-metabolism interactions. PLoS Biol. 17, e2006409 (2019).

    Google Scholar 

  26. Zandawala, M. et al. Modulation of Drosophila post-feeding physiology and behavior by the neuropeptide leucokinin. PLoS Genet. 14, e1007767 (2018).

    Google Scholar 

  27. Nassel, D. R. Substrates for neuronal cotransmission with neuropeptides and small molecule neurotransmitters in Drosophila. Front. Cell. Neurosci. 12, 83 (2018).

    Google Scholar 

  28. Senapati, B. et al. A neural mechanism for deprivation state-specific expression of relevant memories in Drosophila. Nat. Neurosci. 22, 2029–2039 (2019).

    Google Scholar 

  29. Marder, E. & Weimann, J. Neurobiology of Motor Progamme Selection (Pergamon Press/Elsevier, 1992).

  30. Huang, Y. C. et al. A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission. Curr. Biol. 33, 4430–4445 (2023).

    Google Scholar 

  31. Vaaga, C. E., Borisovska, M. & Westbrook, G. L. Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr. Opin. Neurobiol. 29, 25–32 (2014).

    Google Scholar 

  32. Kim, D.-I. et al. Encoding opposing valences through frequency-dependent transmitter switching in single peptidergic neurons. Preprint at bioRxiv https://doi.org/10.1101/2024.11.09.622790 (2024).

  33. Talay, M. et al. Transsynaptic mapping of second-order taste neurons in flies by trans-Tango. Neuron 96, 783–795 (2017).

    Google Scholar 

  34. Snell, N. J., Fisher, J. D., Hartmann, G. G., Talay, M. & Barnea, G. Distributed representation of taste quality by second-order gustatory neurons in Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2020.11.10.377382 (2020).

  35. Nassel, D. R. Leucokinin and associated neuropeptides regulate multiple aspects of physiology and behavior in Drosophila. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22041940 (2021).

  36. Liu, Y., Luo, J., Carlsson, M. A. & Nassel, D. R. Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in Drosophila. J. Comp. Neurol. 523, 1840–1863 (2015).

    Google Scholar 

  37. Luo, J., Liu, Y. & Nassel, D. R. Insulin/IGF-regulated size scaling of neuroendocrine cells expressing the bHLH transcription factor dimmed in Drosophila. PLoS Genet. 9, e1004052 (2013).

    Google Scholar 

  38. Al-Anzi, B. et al. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 20, 969–978 (2010).

    Google Scholar 

  39. de Haro, M. et al. Detailed analysis of leucokinin-expressing neurons and their candidate functions in the Drosophila nervous system. Cell Tissue Res. 339, 321–336 (2010).

    Google Scholar 

  40. Zandawala, M., Marley, R., Davies, S. A. & Nassel, D. R. Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila. Cell. Mol. Life Sci. 75, 1099–1115 (2018).

    Google Scholar 

  41. Galikova, M., Dircksen, H. & Nassel, D. R. The thirsty fly: ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila. PLoS Genet. 14, e1007618 (2018).

    Google Scholar 

  42. Lopez-Arias, B., Dorado, B. & Herrero, P. Blockade of the release of the neuropeptide leucokinin to determine its possible functions in fly behavior: chemoreception assays. Peptides 32, 545–552 (2011).

    Google Scholar 

  43. Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743 e722 (2018).

    Google Scholar 

  44. Isaacman-Beck, J. et al. SPARC enables genetic manipulation of precise proportions of cells. Nat. Neurosci. 23, 1168–1175 (2020).

    Google Scholar 

  45. Matsliah, A. et al. Codex: Connectome Data Explorer. https://doi.org/10.13140/RG.2.2.35928.67844 (2023).

  46. Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Nature 634, 124–138 (2024).

    Google Scholar 

  47. Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 634, 139–152 (2024).

    Google Scholar 

  48. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Google Scholar 

  49. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Google Scholar 

  50. Inagaki, H. K. et al. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148, 583–595 (2012).

    Google Scholar 

  51. Marella, S., Mann, K. & Scott, K. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73, 941–950 (2012).

    Google Scholar 

  52. Sareen, P. F., McCurdy, L. Y. & Nitabach, M. N. A neuronal ensemble encoding adaptive choice during sensory conflict in Drosophila. Nat. Commun. 12, 4131 (2021).

    Google Scholar 

  53. Moreira, J. M. et al. optoPAD, a closed-loop optogenetics system to study the circuit basis of feeding behaviors. Elife 8, https://doi.org/10.7554/eLife.43924 (2019).

  54. Mohammad, F. et al. Optogenetic inhibition of behavior with anion channelrhodopsins. Nat. Methods 14, 271–274 (2017).

    Google Scholar 

  55. Simpson, J. H. Rationally subdividing the fly nervous system with versatile expression reagents. J. Neurogenet. 30, 185–194 (2016).

    Google Scholar 

  56. Davie, K. et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell 174, 982–998 (2018).

    Google Scholar 

  57. Kahsai, L., Kapan, N., Dircksen, H., Winther, A. M. & Nassel, D. R. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLoS ONE 5, e11480 (2010).

    Google Scholar 

  58. Herrero, P., Magarinos, M., Torroja, L. & Canal, I. Neurosecretory identity conferred by the apterous gene: lateral horn leucokinin neurons in Drosophila. J. Comp. Neurol. 457, 123–132 (2003).

    Google Scholar 

  59. Kitamoto, T. & Salvaterra, P. M. A POU homeo domain protein related to dPOU-19/pdm-1 binds to the regulatory DNA necessary for vital expression of the Drosophila choline acetyltransferase gene. J. Neurosci. 15, 3509–3518 (1995).

    Google Scholar 

  60. Hamid, R. et al. Drosophila choline transporter non-canonically regulates pupal eclosion and NMJ integrity through a neuronal subset of mushroom body. Dev. Biol. 446, 80–93 (2019).

    Google Scholar 

  61. Dethier, V. G. Other tastes, other worlds. Science 201, 224–228 (1978).

    Google Scholar 

  62. Shiu, P. K. et al. A Drosophila computational brain model reveals sensorimotor processing. Nature 634, 210–219 (2024).

    Google Scholar 

  63. Sorkac, A. et al. retro-Tango enables versatile retrograde circuit tracing in Drosophila. Elife 12, https://doi.org/10.7554/eLife.85041 (2023).

  64. Chanat, E. & Huttner, W. B. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J. Cell Biol. 115, 1505–1519 (1991).

    Google Scholar 

  65. Nordmann, J. J. & Morris, J. F. Method for quantitating the molecular content of a subcellular organelle: hormone and neurophysin content of newly formed and aged neurosecretory granules. Proc. Natl. Acad. Sci. USA 81, 180–184 (1984).

    Google Scholar 

  66. Karhunen, T., Vilim, F. S., Alexeeva, V., Weiss, K. R. & Church, P. J. Targeting of peptidergic vesicles in cotransmitting terminals. J. Neurosci. 21, RC127 (2001).

    Google Scholar 

  67. Molla-Albaladejo, R., Jimenez-Caballero, M. & Sanchez-Alcaniz, J. A. Molecular characterization of gustatory second-order neurons reveals integrative mechanisms of gustatory and metabolic information. Elife 13, https://doi.org/10.7554/eLife.100947 (2025).

  68. Ohla, K. et al. Recognizing taste: coding patterns along the neural axis in mammals. Chem. Senses 44, 237–247 (2019).

    Google Scholar 

  69. Pfaffmann, C. The afferent code for sensory quality. Am. Psychol. 14, 226 (1959).

    Google Scholar 

  70. Kvello, P., Jorgensen, K. & Mustaparta, H. Central gustatory neurons integrate taste quality information from four appendages in the moth Heliothis virescens. J. Neurophysiol. 103, 2965–2981 (2010).

    Google Scholar 

  71. Wu, J. S. & Luo, L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat. Protoc. 1, 2110–2115 (2006).

    Google Scholar 

  72. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    Google Scholar 

  73. Yu, S.-C. et al. New synapse detection in the whole-brain connectome of Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2025.07.11.664377 (2025).

  74. Iwabuchi, S., Kakazu, Y., Koh, J. Y. & Harata, N. C. Evaluation of the effectiveness of Gaussian filtering in distinguishing punctate synaptic signals from background noise during image analysis. J. Neurosci. Methods 223, 92–113 (2014).

    Google Scholar 

  75. The Open Lab Book. Measuring cell fluorescence using ImageJ https://theolb.readthedocs.io/en/latest/imaging/measuring-cell-fluorescence-using-imagej.html (2014).

  76. Kwon, J. Y., Dahanukar, A., Weiss, L. A. & Carlson, J. R. A map of taste neuron projections in the Drosophila CNS. J. Biosci. 39, 565–574 (2014).

    Google Scholar 

  77. Perkins, L. A. et al. The transgenic RNAi project at Harvard Medical School: resources and validation. Genetics 201, 843–852 (2015).

    Google Scholar 

  78. Pfeiffer, B. D., Truman, J. W. & Rubin, G. M. Using translational enhancers to increase transgene expression in Drosophila. Proc. Natl. Acad. Sci. USA 109, 6626–6631 (2012).

    Google Scholar 

  79. Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L. & Scott, K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149, 1140–1151 (2012).

    Google Scholar 

  80. Ishimoto, H. & Kamikouchi, A. A feedforward circuit regulates action selection of pre-mating courtship behavior in female Drosophila. Curr. Biol. 30, 396–407 (2020).

    Google Scholar 

  81. Itskov, P. M. et al. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat. Commun. 5, 4560 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01DC020703 (G.B.), Brown University Carney Institute for Brain Science, Suna Kıraç Fund for Brain Science (D.S.), Brown University Carney Institute for Brain Science, Graduate Award in Brain Science (D.S.) and NIH/NIDCD award F31DC019540 (A.M.C.). Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) were used in this study. We thank Dr. Brian Kim for conducting preliminary behavioral studies. We thank Susan Brenner-Morton and Drs. Dick Nässel and Matthias Schlichting for sharing reagents. We would like to thank Drs. Karla Kaun, Alexander Fleischmann, Mustafa Talay, and members of the Barnea Laboratory for critical reading of the manuscript.

Author information

Author notes
  1. Anthony M. Crown

    Present address: Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA

  2. Rebecca Siegel

    Present address: Grossman School of Medicine, New York University, NewYork, NY, USA

Authors and Affiliations

  1. Department of Neuroscience, Brown University, Providence, RI, USA

    Doruk Savaş, Angel M. Okoro, Rareș A. Moșneanu, Anthony M. Crown, Rebecca Siegel, Altar Sorkaç, Meet Zandawala & Gilad Barnea

  2. Carney Institute for Brain Science, Brown University, Providence, RI, USA

    Doruk Savaş, Angel M. Okoro, Rareș A. Moșneanu, Anthony M. Crown, Rebecca Siegel, Altar Sorkaç, Meet Zandawala & Gilad Barnea

  3. Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA

    Doruk Savaş & Meet Zandawala

  4. Department of Biology, University of Nevada, Reno, NV, USA

    Zeyu Chang

Authors
  1. Doruk Savaş
    View author publications

    Search author on:PubMed Google Scholar

  2. Angel M. Okoro
    View author publications

    Search author on:PubMed Google Scholar

  3. Rareș A. Moșneanu
    View author publications

    Search author on:PubMed Google Scholar

  4. Anthony M. Crown
    View author publications

    Search author on:PubMed Google Scholar

  5. Zeyu Chang
    View author publications

    Search author on:PubMed Google Scholar

  6. Rebecca Siegel
    View author publications

    Search author on:PubMed Google Scholar

  7. Altar Sorkaç
    View author publications

    Search author on:PubMed Google Scholar

  8. Meet Zandawala
    View author publications

    Search author on:PubMed Google Scholar

  9. Gilad Barnea
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.S., M.Z., and G.B. conceptualized the study. D.S., A.O., R.A.M., A.M.C., Z.C., R.S., A.S., and M.Z. contributed to the acquisition and analysis of the data. D.S. and G.B. administered the project. D.S. and G.B. wrote the manuscript. The project was supervised by M.Z. and G.B.

Corresponding author

Correspondence to Gilad Barnea.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review File

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savaş, D., Okoro, A.M., Moșneanu, R.A. et al. Feeding decision-making by a single neuron via disparate neurotransmitters. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69443-8

Download citation

  • Received: 24 March 2025

  • Accepted: 02 February 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69443-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing