Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Precision engineering chiral interfaces for efficient spin injection in metal halide heterostructures
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Precision engineering chiral interfaces for efficient spin injection in metal halide heterostructures

  • Jin Xiao1 na1,
  • Yang Li  ORCID: orcid.org/0000-0003-2005-73812 na1,
  • Yanan Liu1,
  • Jing Li3,
  • Li Fang4,
  • Haofeng Zheng1,
  • Yanlong Wang1,
  • Qi Liu1,
  • Xuyu Ma1,
  • Shuai Pang1,
  • Jing Hu1,
  • Jianbo Wang  ORCID: orcid.org/0000-0002-3315-31055 &
  • …
  • Shaocong Hou  ORCID: orcid.org/0000-0001-6162-44481,6 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Optical materials and structures
  • Organic–inorganic nanostructures

Abstract

Precise control of interfaces is crucial for spin generation, transport, and detection in opto-spintronics. However, the interface engineering for efficient spin injection remains a significant challenge. Here, we synthesized a helical structure of PbI2 (R-PbI2) via an interfacial chirality-induced growth approach at the heterostructure interface. This few-nanometer-thick R-PbI2 layer shows a lower lattice mismatch with both the adjacent R-NEAPbI3 (R-NEA refers to R-1-(1-naphtyl)ethylamine) and PbI2 layers, and leads to an optimal chiral interface in the chiral heterostructure with minimized residual strain and defect density. Combined with circularly polarized pump-probe spectroscopic and spin-photovoltaic measurements, our chiral heterostructure interface contributes a spin-injection efficiency up to 68%, thus leading to a degree of polarization of 29% in photocurrent. The precise synthesis of a chiral interface offers a promising route to manipulate spin dynamics and achieve a high degree of spin polarization required for advanced opto-spintronic applications.

Data availability

All data generated or analyzed during this study are included in this published article and its Supplementary Information. Source data are provided with this paper.

References

  1. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun 10, 1927 (2019).

    Google Scholar 

  2. Lee, H. et al. Chirality-Induced Spin Selectivity of Chiral 2D Perovskite Enabling Efficient Spin-Dependent Oxygen Evolution Reaction. Small 19, 2304166 (2023).

    Google Scholar 

  3. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Google Scholar 

  4. Huang, Y. et al. Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filtering. Nat. Photonics 15, 475–482 (2021).

    Google Scholar 

  5. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Google Scholar 

  6. Jana, M. K. et al. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling. Nat. Commun 11, 4699 (2020).

    Google Scholar 

  7. Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).

    Google Scholar 

  8. Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc 142, 13030–13040 (2020).

    Google Scholar 

  9. Liu, S. et al. Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskites. Sci. Adv. 9, eadh5083 (2023).

    Google Scholar 

  10. Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS nano 13, 3659–3665 (2019).

    Google Scholar 

  11. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).

    Google Scholar 

  12. Hautzinger, M. P. et al. Room-temperature spin injection across a chiral perovskite/III–V interface. Nature 631, 307–312 (2024).

    Google Scholar 

  13. Jang, G. et al. Core–shell perovskite quantum dots for highly selective room-temperature spin light-emitting diodes. Adv. Mater., 2309335 (2024).

  14. Liu, X. et al. Exciton chirality transfer empowers self-triggered spin-polarized amplified spontaneous emission from 1D-anchoring-3D perovskites. Adv. Mater. 35, 2305260 (2023).

    Google Scholar 

  15. Peng, Y. et al. Realization of vis–NIR dual-modal circularly polarized light detection in chiral perovskite bulk crystals. J. Am. Chem. Soc 143, 14077–14082 (2021).

    Google Scholar 

  16. Yang, L., Gao, Y., Wang, Z., Yang, L. & Shao, M. Spin detector for panchromatic circularly polarized light detection. Nat. Commun 16, 4161 (2025).

    Google Scholar 

  17. Chen, Y. et al. Manipulation of Valley Pseudospin by Selective Spin Injection in Chiral Two-Dimensional Perovskite/Monolayer Transition Metal Dichalcogenide Heterostructures. ACS Nano 14, 15154–15160 (2020).

    Google Scholar 

  18. Zhan, G. et al. Stimulating and Manipulating Robust Circularly Polarized Photoluminescence in Achiral Hybrid Perovskites. Nano Lett 22, 3961–3968 (2022).

    Google Scholar 

  19. Zhang, X. et al. Heterogeneous Integration of Chiral Lead–Chloride Perovskite Crystals with Si Wafer for Boosted Circularly Polarized Light Detection in Solar-Blind Ultraviolet Region. Small 17, 2102884 (2021).

    Google Scholar 

  20. Liu, S. et al. Orientation-Driven Chirality Funnels in Chiral Low-Dimensional Lead-Halide Perovskite Heterostructures. J. Am. Chem. Soc 147, 16681–16693 (2025).

    Google Scholar 

  21. Xu, Y. et al. Elucidating Interfacial Carrier Transfer Dynamics for Circularly Polarized Emission in Self-Assembled Perovskite Heterostructures. ACS nano (2025).

  22. Haque, M. A. et al. Remote chirality transfer in low-dimensional hybrid metal halide semiconductors. Nature Chemistry 17, 29–37 (2025).

    Google Scholar 

  23. Patterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review 56, 978–982 (1939).

    Google Scholar 

  24. Ishii, A. & Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv 6, eabd3274 (2020).

    Google Scholar 

  25. Ahuja, R. et al. Electronic and optical properties of lead iodide. J. Appl. Phys. 92, 7219–7224 (2002).

    Google Scholar 

  26. Ma, S. et al. Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth. Nat. Commun 13, 3259 (2022).

    Google Scholar 

  27. Xiao, J. et al. Strain-Amplified Exciton Chirality in Organic-Inorganic Hybrid Materials. Phys. Rev. Lett. 133, 056903 (2024).

    Google Scholar 

  28. Lv, Q. et al. Lateral epitaxial growth of two-dimensional organic heterostructures. Nature Chemistry 16, 201–209 (2024).

    Google Scholar 

  29. Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).

    Google Scholar 

  30. Chen, Z., Prud’homme, N., Wang, B. & Ji, V. Residual stress gradient analysis with GIXRD on ZrO2 thin films deposited by MOCVD. Surf. Coat. Technol. 206, 405–410 (2011).

    Google Scholar 

  31. Duan, T. et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384, 878–884 (2024).

    Google Scholar 

  32. Bube, R. H. Trap density determination by space-charge-limited currents. J. Appl. Phys. 33, 1733–1737 (1962).

    Google Scholar 

  33. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Google Scholar 

  34. Liu, Z. et al. Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells. Adv. Mater. 29, 1606774 (2017).

    Google Scholar 

  35. Wang, H. et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater. 32, 2000865 (2020).

    Google Scholar 

  36. Sun, X. et al. Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell. Joule 6, 850–860 (2022).

    Google Scholar 

  37. Zhao, W. et al. Transient circular dichroism and exciton spin dynamics in all-inorganic halide perovskites. Nat. Commun 11, 5665 (2020).

    Google Scholar 

  38. Song, P. H. & Kim, K. W. Spin relaxation of conduction electrons in bulk III-V semiconductors. Phys. Rev. B 66, 035207 (2002).

    Google Scholar 

  39. Gulia, V. & Vedeshwar, A. G. Optical properties of PbI2 films: Quantum confinement and residual stress effect. Phys. Rev. B 75, 045409 (2007).

    Google Scholar 

  40. Liu, S. et al. Optically induced long-lived chirality memory in the color-tunable chiral lead-free semiconductor (R)/(S)-CHEA4Bi2BrxI10–x (x = 0–10). J. Am. Chem. Soc 144, 14079–14089 (2022).

    Google Scholar 

  41. Sun, S., Jiang, J., Jia, M., Tian, Y. & Xiao, Y. 1.5 D Chiral Perovskites Mediated by Hydrogen-Bonding Network with Remarkable Spin-Polarized Property. Angew. Chem., e202423314 (2025).

  42. Zhang, D. et al. Room temperature near unity spin polarization in 2D Van der Waals heterostructures. Nat. Commun 11, 4442 (2020).

    Google Scholar 

  43. Li, B. et al. Chiral Quasi-2D Perovskites Based Single Junction Spin-Light-Emitting Diodes. Adv. Funct. Mater. 35, 2415433 (2025).

    Google Scholar 

  44. Lee, H. et al. A dual spin-controlled chiral two-/three-dimensional perovskite artificial leaf for efficient overall photoelectrochemical water splitting. Nat. Commun 15, 4672 (2024).

    Google Scholar 

  45. Lu, Y. et al. Spin-Dependent Charge Transport in 1D Chiral Hybrid Lead-Bromide Perovskite with High Stability. Adv. Funct. Mater. 31, 2104605 (2021).

    Google Scholar 

  46. Stroud, R. M. et al. Reduction of Spin Injection Efficiency by Interface Defect Spin Scattering in ZnMnSe/AlGaAs-GaAs Spin-Polarized Light-Emitting Diodes. Phys. Rev. Lett. 89, 166602 (2002).

    Google Scholar 

  47. Chen, J. et al. Preferentially oriented large antimony trisulfide single-crystalline cuboids grown on polycrystalline titania film for solar cells. Commun. Chem. 2, 121 (2019).

    Google Scholar 

  48. Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 17, 856–864 (2023).

    Google Scholar 

  49. Wang, C., Li, G., Dai, Z., Tian, W. & Li, L. Patterned Chiral Perovskite Film for Self-Driven Stokes Photodetectors. Adv. Funct. Mater. 34, 2316265 (2024).

    Google Scholar 

  50. Li, M. et al. Chiral ligand-induced structural transformation of low-dimensional hybrid perovskite for circularly polarized photodetection. Chem. Mater. 34, 2955–2962 (2022).

    Google Scholar 

  51. Liu, Q. et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat. Commun 14, 7179 (2023).

    Google Scholar 

  52. Chen, Q. et al. Uniaxial-Oriented Chiral Perovskite for Flexible Full-Stokes Polarimeter. Adv. Mater. 36, 2400493 (2024).

    Google Scholar 

  53. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245 (1994).

    Google Scholar 

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Google Scholar 

  55. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  56. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132 (2010).

Download references

Acknowledgements

The authors thank Ziang Lu and Prof. Xiang Zhou from the College of Chemistry and Molecular Sciences of Wuhan University for their assistance with CD measurement. The authors also thank the Core Facility of Wuhan University. S.H. acknowledges support from the National Natural Science Foundation of China (Grant No. 52273194) and the Shenzhen Science and Technology Program (Grant No. JCYJ20240813111407011, JCYJ20250604122538010).

Author information

Author notes
  1. These authors contributed equally: Jin Xiao, Yang Li.

Authors and Affiliations

  1. School of Electrical Engineering and Automation, Wuhan University, Wuhan, PR China

    Jin Xiao, Yanan Liu, Haofeng Zheng, Yanlong Wang, Qi Liu, Xuyu Ma, Shuai Pang, Jing Hu & Shaocong Hou

  2. Department of Engineering, 9 JJ Thomson Avenue, University of Cambridge, Cambridge, United Kingdom

    Yang Li

  3. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China

    Jing Li

  4. School of Science, Hubei University of Technology, Wuhan, PR China

    Li Fang

  5. School of Physics and Technology, Wuhan University, Wuhan, PR China

    Jianbo Wang

  6. Wuhan University Shenzhen Institute, Shenzhen, PR China

    Shaocong Hou

Authors
  1. Jin Xiao
    View author publications

    Search author on:PubMed Google Scholar

  2. Yang Li
    View author publications

    Search author on:PubMed Google Scholar

  3. Yanan Liu
    View author publications

    Search author on:PubMed Google Scholar

  4. Jing Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Li Fang
    View author publications

    Search author on:PubMed Google Scholar

  6. Haofeng Zheng
    View author publications

    Search author on:PubMed Google Scholar

  7. Yanlong Wang
    View author publications

    Search author on:PubMed Google Scholar

  8. Qi Liu
    View author publications

    Search author on:PubMed Google Scholar

  9. Xuyu Ma
    View author publications

    Search author on:PubMed Google Scholar

  10. Shuai Pang
    View author publications

    Search author on:PubMed Google Scholar

  11. Jing Hu
    View author publications

    Search author on:PubMed Google Scholar

  12. Jianbo Wang
    View author publications

    Search author on:PubMed Google Scholar

  13. Shaocong Hou
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.X. and S.H. conceived the project. J.X. grew the materials, fabricated devices and carried out XRD, SEM, AFM measurements. J.X. and Y.L. analyzed the data. J.L. performed TA and CTA. L.F. performed DFT theoretical calculation. Y.L. and J.X. wrote the manuscript. Y.L., H.Z., Q.L., Y.W., X.M., S.P., J.H., J.W. and S.H. revised the manuscript. S.H. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Shaocong Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jingying Wang and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Li, Y., Liu, Y. et al. Precision engineering chiral interfaces for efficient spin injection in metal halide heterostructures. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69455-4

Download citation

  • Received: 24 June 2025

  • Accepted: 02 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69455-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing