Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Ultralight soft electrostatic actuators based on solid-liquid-gas architectures
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Ultralight soft electrostatic actuators based on solid-liquid-gas architectures

  • Hyeong-Joon Joo  ORCID: orcid.org/0000-0002-3751-860X1,
  • Toshihiko Fukushima  ORCID: orcid.org/0000-0001-7203-95271,
  • Xiying Li1,
  • Alona Shagan Shomron  ORCID: orcid.org/0000-0002-4133-61981,
  • Soo Jin Adrian Koh  ORCID: orcid.org/0000-0003-2473-09911,
  • Philipp Rothemund  ORCID: orcid.org/0000-0002-0588-69931,2 &
  • …
  • Christoph Keplinger  ORCID: orcid.org/0000-0001-9151-41001,3,4 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electrical and electronic engineering
  • Mechanical engineering
  • Soft materials

Abstract

Soft actuators enable versatile and adaptable robots capable of operating in unstructured environments and close to humans. Soft electrostatic actuators utilizing electrohydraulic principles are particularly promising, combining all-around actuation performance with portable driving electronics. These electrohydraulic actuators harness liquid dielectrics enclosed in solid dielectric shells to sustain high electric fields; the liquid dielectric however constitutes most of the actuator mass, limiting power-to-weight ratio. Here, we present ultralight soft electrostatic actuators based on solid-liquid-gas architectures: the introduction of gaseous dielectrics as a third phase substantially improves power-to-weight ratio by reducing actuator mass and increasing actuation speed. Through theoretical and experimental analyses, we pinpoint the fundamental performance limit as the electrical breakdown in the gas, governed by Paschen’s law, thereby providing a guideline for selection of gaseous dielectrics. Using the Peano-HASEL (hydraulically amplified self-healing electrostatic) actuator as a model system, we identify a gas mixture of C4F7N and CO2 that enables outstanding specific energy of 51.4 J kg-1 (a nine-fold improvement over conventional Peano-HASELs); using ambient air as gaseous dielectric we still achieve 33.5 J kg-1 and a power-to-weight ratio of 1600 W kg-1 (a five- and eleven-fold improvement). We illustrate these enhanced performance metrics in a jumping robot, showing a 60% increase in jump height, highlighting the wide potential of ultralight soft electrostatic actuators for adaptable and agile robotic systems.

Similar content being viewed by others

Electrically-driven phase transition actuators to power soft robot designs

Article Open access 25 April 2025

Advancing soft robotics: recent progress in dielectric elastomer and fluid actuators

Article Open access 12 February 2026

Customizing a self-healing soft pump for robot

Article Open access 14 April 2021

Data availability

Measured data and analysis code used to generate the main text figures are available in a public repository at https://doi.org/10.17617/3.83PLAQ. Source data are provided in this paper.

References

  1. Royakkers, L. & van Est, R. A literature review on new robotics: automation from love to war. Int. J. Soc. Robot. 7, 549–570 (2015).

    Google Scholar 

  2. Matthias, B., Oberer-Treitz, S., Staab, H., Schuller, E. & Peldschus, S. Injury risk quantification for industrial robots in collaborative operation with humans. In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics). 1–6 (VDE).

  3. Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. 123, 1930–1935 (2011).

    Google Scholar 

  4. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Google Scholar 

  5. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Google Scholar 

  6. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Google Scholar 

  7. Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).

    Google Scholar 

  8. Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690 (2016).

    Google Scholar 

  9. Whitesides, G. M. Soft Robotics. Angew. Chem. Int. Ed. 57, 4258–4273 (2018).

  10. Mirvakili, S. M. & Hunter, I. W. Artificial muscles: Mechanisms, applications, and challenges. Adv. Mater. 30, 1704407 (2018).

    Google Scholar 

  11. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    Google Scholar 

  12. Tondu, B. Modelling of the McKibben artificial muscle: A review. J. Intell. Mater. Syst. Struct. 23, 225–253 (2012).

    Google Scholar 

  13. Li, S., Vogt, D. M., Rus, D. & Wood, R. J. Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. USA 114, 13132–13137 (2017).

    Google Scholar 

  14. Connolly, F., Walsh, C. J. & Bertoldi, K. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc. Natl. Acad. Sci. USA 114, 51–56 (2017).

    Google Scholar 

  15. Wang, Y. et al. Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior. Proc. Natl. Acad. Sci. USA 117, 14602–14608 (2020).

    Google Scholar 

  16. Chu, H. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 371, 494–498 (2021).

    Google Scholar 

  17. Haines, C. S. et al. Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014).

    Google Scholar 

  18. Jin, B. et al. Programming a crystalline shape memory polymer network with thermo-and photo-reversible bonds toward a single-component soft robot. Sci. Adv. 4, eaao3865 (2018).

    Google Scholar 

  19. Ford, M. J. et al. A multifunctional shape-morphing elastomer with liquid metal inclusions. Proc. Natl. Acad. Sci. USA 116, 21438–21444 (2019).

    Google Scholar 

  20. Kotikian, A. et al. Liquid crystal elastomer lattices with thermally programmable deformation via multi-material 3D printing. Adv. Mater. 36, 2310743 (2024).

  21. Duduta, M., Hajiesmaili, E., Zhao, H., Wood, R. J. & Clarke, D. R. Realizing the potential of dielectric elastomer artificial muscles. Proc. Natl. Acad. Sci. USA 116, 2476–2481 (2019).

    Google Scholar 

  22. Sîrbu, I.-D. et al. Electrostatic bellow muscle actuators and energy harvesters that stack up. Sci. Robot. 6, eaaz5796 (2021).

    Google Scholar 

  23. Mitchell, S. K., Martin, T. & Keplinger, C. A pocket-sized ten-channel high voltage power supply for soft electrostatic actuators. Adv. Mater. Technol. 7, 2101469 (2022).

    Google Scholar 

  24. Carpi, F. et al. Standards for dielectric elastomer transducers. Smart Mater. Struct. 24, 105025 (2015).

    Google Scholar 

  25. Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).

    Google Scholar 

  26. Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R. E. & Sommer-Larsen, P. Dielectric Elastomers as Alectromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. (Elsevier, 2011).

  27. Chen, Y. et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575, 324–329 (2019).

    Google Scholar 

  28. Li, G. et al. Self-powered soft robot in the Mariana Trench. Nature 591, 66–71 (2021).

    Google Scholar 

  29. Wu, E. Y. & Vollertsen, R.-P. On the Weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination. Part I: theory, methodology, experimental techniques. IEEE Trans. Electron Devices 49, 2131–2140 (2002).

    Google Scholar 

  30. Rothemund, P., Kellaris, N., Mitchell, S. K., Acome, E. & Keplinger, C. HASEL artificial muscles for a new generation of lifelike robots—recent progress and future opportunities. Adv. Mater. 33, 2003375 (2021).

    Google Scholar 

  31. Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

    Google Scholar 

  32. Kellaris, N., Gopaluni Venkata, V., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3, eaar3276 (2018).

    Google Scholar 

  33. Kellaris, N. et al. Spider-Inspired Electrohydraulic Actuators for Fast, Soft-Actuated Joints. Adv. Sci. 8, 2100916 (2021).

    Google Scholar 

  34. Wang, T. et al. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation. Sci. Adv. 9, eadg0292 (2023).

    Google Scholar 

  35. Johnson, B. et al. A multifunctional soft robotic shape display with high-speed actuation, sensing, and control. Nat. Commun. 14, 4516 (2023).

    Google Scholar 

  36. Yoder, Z. et al. A soft, fast and versatile electrohydraulic gripper with capacitive object size detection. Adv. Funct. Mater. 33, 2209080 (2023).

    Google Scholar 

  37. Buchner, T. J. et al. Electrohydraulic musculoskeletal robotic leg for agile, adaptive, yet energy-efficient locomotion. Nat. Commun. 15, 1–14 (2024).

    Google Scholar 

  38. Sanchez-Tamayo, N. et al. Cutaneous electrohydraulic (CUTE) wearable devices for pleasant broad-bandwidth haptic cues. Adv. Sci. 11, 2402461 (2024).

  39. Yoder, Z., Rumley, E. H., Schmidt, I., Rothemund, P. & Keplinger, C. Hexagonal electrohydraulic modules for rapidly reconfigurable high-speed robots. Sci. Robot. 9, eadl3546 (2024).

    Google Scholar 

  40. Leroy, E., Hinchet, R. & Shea, H. Multimode hydraulically amplified electrostatic actuators for wearable haptics. Adv. Mater. 32, 2002564 (2020).

    Google Scholar 

  41. Leroy, E. & Shea, H. Hydraulically amplified electrostatic taxels (haxels) for full body haptics. Adv. Mater. Technol. 8, 2300242 (2023).

    Google Scholar 

  42. Grasso, G., Rosset, S. & Shea, H. Fully 3D-printed, stretchable, and conformable haptic interfaces. Adv. Funct. Mater. 33, 2213821 (2023).

    Google Scholar 

  43. Taghavi, M., Helps, T. & Rossiter, J. Electro-ribbon actuators and electro-origami robots. Sci. Robot. 3, eaau9795 (2018).

    Google Scholar 

  44. Diteesawat, R. S., Helps, T., Taghavi, M. & Rossiter, J. Electro-pneumatic pumps for soft robotics. Sci. Robot. 6, eabc3721 (2021).

    Google Scholar 

  45. Helps, T., Romero, C., Taghavi, M., Conn, A. T. & Rossiter, J. Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping. Sci. Robot. 7, eabi8189 (2022).

    Google Scholar 

  46. Kellaris, N., Venkata, V. G., Rothemund, P. & Keplinger, C. An analytical model for the design of Peano-HASEL actuators with drastically improved performance. Extreme Mech. Lett. 29, 100449 (2019).

    Google Scholar 

  47. Paschen, F. Über den Funkübergang in Luft: Wasserstoff und Kohlensäure bei verschiedenen Drücken erforderliche Potenzialdifferenz. (JA Barth, 1889).

  48. Husain, E. & Nema, R. Analysis of Paschen curves for air, N2 and SF6 using the Townsend breakdown equation. IEEE Trans. Electr. Insul. 17, 350–353 (1982).

  49. Rothemund, P., Kellaris, N. & Keplinger, C. How inhomogeneous zipping increases the force output of Peano-HASEL actuators. Extreme Mech. Lett. 31, 100542 (2019).

    Google Scholar 

  50. Rothemund, P., Kirkman, S. & Keplinger, C. Dynamics of electrohydraulic soft actuators. Proc. Natl. Acad. Sci. USA 117, 16207–16213 (2020).

    Google Scholar 

  51. Berger, L. Dielectric strength of insulating materials. Carbon 1, 2 (2006).

    Google Scholar 

  52. Sîrbu, I.-D. et al. Electrostatic actuators with constant force at low power loss using matched dielectrics. Nat. Electron. 6, 888–899 (2023).

    Google Scholar 

  53. Kao, K. The effects of a thin dielectric layer covering metallic electrodes on the electric breakdown characteristics of fluids. Br. J. Appl. Phys. 15, 1247 (1964).

    Google Scholar 

  54. Mitchell, S. K. et al. An easy-to-implement toolkit to create versatile and high-performance HASEL actuators for untethered soft robots. Adv. Sci. 6, 1900178 (2019).

    Google Scholar 

  55. Rabie, M. & Franck, C. M. Assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse gas SF6. Environ. Sci. Technol. 52, 369–380 (2018).

    Google Scholar 

  56. Owens, J., Xiao, A., Bonk, J., DeLorme, M. & Zhang, A. Recent development of two alternative gases to SF6 for high voltage electrical power applications. Energies 14, 5051 (2021).

    Google Scholar 

  57. Madden, J. D. et al. Artificial muscle technology: physical principles and naval prospects. IEEE J. Ocean. Eng. 29, 706–728 (2004).

    Google Scholar 

  58. Mirfakhrai, T., Madden, J. D. & Baughman, R. H. Polymer artificial muscles. Mater. Today 10, 30–38 (2007).

    Google Scholar 

  59. Yoder, Z. et al. Design of a high-speed prosthetic finger driven by Peano-HASEL actuators. Front. Robot. AI. 181, https://doi.org/10.3389/frobt.2020.586216 (2020).

  60. Wang, X., Mitchell, S. K., Rumley, E. H., Rothemund, P. & Keplinger, C. High-strain peano-HASEL actuators. Adv. Funct. Mater. 30, 1908821 (2020).

    Google Scholar 

  61. Safety Data Sheet, 3M™ Novec™ 4710 Insulating Gas. 3M Company: St. Paul, MN, USA (2019).

Download references

Acknowledgements

This work was supported by the Max Planck Society, Germany. We thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting H.-J.J. and T.F.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany

    Hyeong-Joon Joo, Toshihiko Fukushima, Xiying Li, Alona Shagan Shomron, Soo Jin Adrian Koh, Philipp Rothemund & Christoph Keplinger

  2. Institute for Adaptive Mechanical Systems, University of Stuttgart, Stuttgart, Germany

    Philipp Rothemund

  3. Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA

    Christoph Keplinger

  4. Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA

    Christoph Keplinger

Authors
  1. Hyeong-Joon Joo
    View author publications

    Search author on:PubMed Google Scholar

  2. Toshihiko Fukushima
    View author publications

    Search author on:PubMed Google Scholar

  3. Xiying Li
    View author publications

    Search author on:PubMed Google Scholar

  4. Alona Shagan Shomron
    View author publications

    Search author on:PubMed Google Scholar

  5. Soo Jin Adrian Koh
    View author publications

    Search author on:PubMed Google Scholar

  6. Philipp Rothemund
    View author publications

    Search author on:PubMed Google Scholar

  7. Christoph Keplinger
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.-J.J., P.R., and C.K. designed research; H.-J.J., T.F., and X.L. performed research; H.-J.J., T.F., X.L., A.S., S.J.A.K., and P.R. contributed new reagents/analytic tools; H.-J.J., T.F., and X.L. analyzed data; H.-J.J., T.F., X.L., A.S., S.J.A.K., P.R., and C.K. wrote the paper; P.R. and C.K. supervised the research.

Corresponding authors

Correspondence to Philipp Rothemund or Christoph Keplinger.

Ethics declarations

Competing interests

C.K. is a coinventor on three patents, which cover the fundamentals and basic designs of HASEL actuators (assignee of all three patents is the Regents of the University of Colorado: US Patent 10995779B2, granted 2021-05-04; US Patent 11486421B2, granted 2022-11-01; and US Patent 11408452B2, granted 2022-08-09). C.K. is a cofounder of Artimus Robotics, a start-up company that commercializes HASEL actuators. The other authors declare that they have no competing interests.

Peer review

Peer review information

Nature Communications thanks Huiqi Shao, and the other anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, HJ., Fukushima, T., Li, X. et al. Ultralight soft electrostatic actuators based on solid-liquid-gas architectures. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69463-4

Download citation

  • Received: 02 December 2024

  • Accepted: 02 February 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69463-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing