Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Turbulent dynamo in the terrestrial magnetosheath
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

Turbulent dynamo in the terrestrial magnetosheath

  • Zoltán Vörös  ORCID: orcid.org/0000-0001-7597-238X1,2,
  • Owen Wyn Roberts  ORCID: orcid.org/0000-0002-3913-13533,
  • Yasuhito Narita  ORCID: orcid.org/0000-0002-5332-88814,5,
  • Emiliya Yordanova  ORCID: orcid.org/0000-0002-9707-31476,
  • Rumi Nakamura  ORCID: orcid.org/0000-0002-2620-92111 na1,
  • Adriana Settino  ORCID: orcid.org/0000-0003-1821-73901 na1,
  • Daniel Schmid  ORCID: orcid.org/0000-0001-7818-43381 na1,
  • Martin Volwerk1 na1,
  • Cyril L. Simon Wedlund  ORCID: orcid.org/0000-0003-2201-76151,7 na1,
  • Ali Varsani  ORCID: orcid.org/0000-0003-1814-15681 na1,
  • Luca Sorriso-Valvo  ORCID: orcid.org/0000-0002-5981-77588,9 na1,
  • Philippe André Bourdin  ORCID: orcid.org/0000-0002-6793-601X7 na1 &
  • …
  • Árpád Kis2,10 na1 

Nature Communications , Article number:  (2026) Cite this article

  • 401 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Astronomy and planetary science
  • Magnetospheric physics

Abstract

Dynamo action refers to energy exchange processes through which magnetic fields are generated at the expense of kinetic energy of the plasma flows. Dynamos can generate magnetic fields across scales larger or smaller than the flows themselves. Multi-scale dynamo processes underpin magnetic phenomena from planetary cores to stellar and galactic environments, while also shaping turbulent magnetic fields at smaller scales. Yet, experimental validation of dynamo action has remained largely confined to laboratories. Here we report evidence for a turbulent dynamo in the terrestrial magnetosheath. Observations reveal the predicted spatial topology of stretched and folded magnetic fields, compressive effects, and pressure anisotropy instabilities essential for magnetic field amplification. Our findings also highlight the central role of turbulent dynamos in energy conversion and structure formation within collisionless plasma turbulence. The observed energy exchange signatures indicate that the magnetosheath may serve as a natural testbed for validating dynamo theories and simulations.

Similar content being viewed by others

Large-scale dynamos driven by shear-flow-induced jets

Article 21 January 2026

Direct observation of ion cyclotron damping of turbulence in Earth’s magnetosheath plasma

Article Open access 07 October 2024

Turbulent magnetic reconnection generated by intense lasers

Article 16 January 2023

Data availability

MMS data are publicly available at https://lasp.colorado.edu/mms/sdc/public/about/browse-wrapper/, where in the folders mms1-4, the magnetic field data are under /fgm/brst/l2/2015/11/30/, and the ion moments data, including velocity, pressure, and temperature, are under fpi/brst/l2/dis-moms/2015/11/30/, and pitch angle data are under fpi/brst/l2/dis-dist/2015/11/30/. Source data are provided with this paper.

Code availability

The estimation of spatial gradients from multi-spacecraft tetrahedron measurements is described in ref. 53 implemented in the software package irfu-matlab, https://github.com/irfu/irfu-matlab. Irfu MATLAB can also be downloaded from Zenodo56. The following functions were applied: c_4_grad.m for calculating divergences, gradients, and curls; mms.rotate_tensor.m for calculating parallel and perpendicular components of the temperature tensor; irf_resamp.m for resampling a quantity onto a timeline of another quantity. The scripts for reproducing the figures are uploaded to Zenodo https://doi.org/10.5281/zenodo.1778077057.

References

  1. Schekochihin, A. A. & Cowley, S. C. Turbulence and magnetic fields in astrophysical plasmas. in Fluid Mechanics and Its Applications: Magnetohydrodynamics—Historical Evolution and Trends (eds Molokov, S., Moreau, R. & Moffatt, H.) Vol. 80, 85–115. https://doi.org/10.1007/978-1-4020-4833-3_6 (Springer, 2007).

  2. Verhille, G., Plihon, N., Bourgoin, M., Odier, P. & Pinton, J.-F. Laboratory dynamo experiments. Space Sci. Rev. 152, 543–564 (2010).

    Google Scholar 

  3. Tzeferacos, P. et al. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma. Nat. Commun. 9, 591 (2018).

    Google Scholar 

  4. Bott, A. F. A. et al. Time-resolved turbulent dynamo in a laser plasma. Proc. Natl. Acad. Sci. USA. 118, e2015729118 (2021).

    Google Scholar 

  5. Tobias, S. M., Cattaneo, F. & Boldyrev, S. MHD dynamos and turbulence. in Ten Chapters in Turbulence (eds Davidson, P., Kaneda, Y. & Sreenivasan, K.) 351–404 (Cambridge University Press, 2013).

  6. Rincon, F. Dynamo theories. J. Plasma Phys. 85, 855850501 (2019).

    Google Scholar 

  7. Moffatt, K. & Dormy, E. Self-exciting Fluid Dynamos (Cambridge University Press, 2019).

  8. St-Onge, D. & Kunz, M. W. Fluctuation dynamo in a collisionless, weakly magnetized plasma. Astrophys. J. Lett. 863, L25 (2018).

    Google Scholar 

  9. Narita, Y. & Vörös, Z. Evaluation of electromotive force in interplanetary space. Ann. Geophys. 36, 101–106 (2018).

    Google Scholar 

  10. Bourdin, P.-A., Hofer, B. & Narita, Y. Inner structure of CME shock fronts revealed by the electromotive force and turbulent transport coefficients in Helios-2 observations. Astrophys. J. 855, 111 (2018).

    Google Scholar 

  11. Bourdin, P.-A. & Narita, Y. Electromotive field in space and astrophysical plasmas. Rev. Mod. Plasma Phys. 9, 3 (2025).

    Google Scholar 

  12. Narita, Y., Plaschke, F. & Vörös, Z. The magnetosheath. in Space Physics and Aeronomy Collection Volume 2: Magnetospheres in the Solar System (eds Maggiolo, R., André, N., Hasegawa, H. & Welling, D.) Vol. 259, 137–152. AGU Geophysical Monograph. https://doi.org/10.1002/9781119815624.ch9 (John Wiley & Sons, Inc., 2021).

  13. Burch, J. L., Moore, T. E., Torbert, R. B. & Giles, B. L. Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199, 5–21 (2016).

    Google Scholar 

  14. Mininni, P. D., Gómez, D. O. & Mahajan, S. M. Dynamo action in magnetohydrodynamics and Hall-magnetohydrodynamics. Astrophys. J. 587, 472–481 (2003).

    Google Scholar 

  15. Ryu, C.-M. Turbulence-induced transport dynamo mechanism. Plasma Res. Expr. 3, 035002 (2021).

    Google Scholar 

  16. Meneguzzi, M., Frisch, U. & Pouquet, A. Helical and nonhelical turbulent dynamos. Phys. Rev. Lett. 47, 1060–1064 (1981).

    Google Scholar 

  17. Zeldovich, Y. B., Ruzmaikin, A. A., Molchanov, S. A. & Sokolov, D. D. Kinematic dynamo problem in a linear velocity field. J. Fluid Mech. 144, 1–11 (1984).

    Google Scholar 

  18. Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L. & McWilliams, J. C. Simulations of the small-scale turbulent dynamo. Astrophys. J. 612, 276–307 (2004).

    Google Scholar 

  19. St-Onge, D. A., Kunz, M. W., Squire, J. & Schekochihin, A. A. Fluctuation dynamo in a weakly collisional plasma. J. Plasma Phys. 86, 905860503 (2020).

    Google Scholar 

  20. Tobias, S. M. The turbulent dynamo. J. Fluid Mech. 912, P1 (2021).

    Google Scholar 

  21. Schekochihin, A. A., Maron, J. L., Cowley, S. C. & McWilliams, J. C. The small-scale structure of magnetohydrodynamic turbulence with large magnetic Prandtl numbers. Astrophys. J. 576, 806–813 (2002).

    Google Scholar 

  22. Kulsrud, R. M., Cowley, S. C., Gruzinov, A. V. & Sudan, R. N. Dynamos and cosmic magnetic fields. Phys. Rep. 283, 213–226 (1997).

    Google Scholar 

  23. Santos-Lima, R. et al. Magnetic field amplification and evolution in turbulent collisionless magnetohydrodynamics: an application to the intracluster medium. Astrophys. J. 781, 84 (2014).

    Google Scholar 

  24. Helander, P., Strumik, M. & Schekochihin, A. A. Constraints on dynamo action in plasmas. J. Plasma Phys. 82, 905820601 (2016).

    Google Scholar 

  25. Chew, G. F., Goldberger, M. L. & Low, F. E. The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. A 236, 112–118 (1956).

    Google Scholar 

  26. Arzamasskiy, L., Kunz, M. W., Squire, J., Quataert, E. & Schekochihin, A. A. Kinetic turbulence in collisionless high-β plasmas. Phys. Rev. X 13, 021014 (2023).

    Google Scholar 

  27. Rincon, F., Califano, F., Schekochihin, A. A. & Valentini, F. Turbulent dynamo in a collisionless plasma. Proc. Natl. Acad. Sci. USA. 113, 3950–3953 (2016).

    Google Scholar 

  28. Vörös, Z., Yordanova, E., Khotyaintsev, Y. V., Varsani, A. & Narita, Y. Energy conversion at kinetic scales in the turbulent magnetosheath. Front. Astron. Space Sci. 6, 60 (2019).

    Google Scholar 

  29. Yordanova, E. et al. Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath. Geophys. Res. Lett. 43, 5969–5978 (2016).

    Google Scholar 

  30. Vörös, Z. et al. MMS observations of magnetic reconnection in the turbulent magnetosheath. J. Geophys. Res. Space Phys. 122, 11442–11467 (2017).

    Google Scholar 

  31. Yang, Y. et al. Role of magnetic field curvature in magnetohydrodynamic turbulence. Phys. Plasmas 26, 072306 (2019).

    Google Scholar 

  32. Bandyopadhyay, R. et al. In situ measurement of curvature of magnetic field in turbulent space plasmas: a statistical study. Astrophys. J. Lett. 893, L25 (2020).

    Google Scholar 

  33. Hellinger, P., Trávníček, P. M., Kasper, J. C. & Lazarus, A. J. Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, L09101 (2006).

    Google Scholar 

  34. Samsonov, A. A., Alexandrova, O., Lacombe, C., Maksimovic, M. & Gary, S. P. Proton temperature anisotropy in the magnetosheath: comparison of 3-D MHD modelling with Cluster data. Ann. Geophys. 25, 1157–1173 (2007).

    Google Scholar 

  35. Gary, S. P., Li, H., O’Rourke, S. & Winske, D. Proton resonant firehose instability: temperature anisotropy and fluctuating field constraints. J. Geophys. Res. Space Phys. 103, 14567–14574 (1998).

    Google Scholar 

  36. Galishnikova, A. K., Kunz, M. W. & Schekochihin, A. A. Tearing instability and current sheet disruption in the turbulent dynamo. Phys. Rev. X 12, 041027 (2022).

    Google Scholar 

  37. Hellinger, P. & Trávníček, P. M. Oblique proton fire hose instability in the expanding solar wind: hybrid simulations. J. Geophys. Res. Space Phys. 113, A10109 (2008).

    Google Scholar 

  38. Hasegawa, A. Drift mirror instability in the magnetosphere. Phys. Fluids 12, 2642–2650 (1969).

    Google Scholar 

  39. Yang, Y. et al. Effective viscosity, resistivity and Reynolds number in weakly collisional plasma turbulence. Mon. Not. R. Astron. Soc. 528, 6119–6128 (2024).

    Google Scholar 

  40. Stawarz, J. E. et al. Turbulence-driven magnetic reconnection and the magnetic correlation length: observations from Magnetospheric Multiscale in Earth’s magnetosheath. Phys. Plasmas 29, 012302 (2022).

    Google Scholar 

  41. Yordanova, E., Vaivads, A., André, M., Buchert, S. & Vörös, Z. Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft. Phys. Rev. Lett. 100, 205003 (2008).

    Google Scholar 

  42. Vörös, Z. et al. How to improve our understanding of solar wind–magnetosphere interactions on the basis of the statistical evaluation of the energy budget in the magnetosheath? Front. Astron. Space Sci. 10, 1163139 (2023).

    Google Scholar 

  43. Svenningsson, I., Yordanova, E., Khotyaintsev, Y., André, M. & Cozzani, G. Classifying the magnetosheath using local measurements from MMS. J. Geophys. Res. Space Phys. 130, e2024JA033272 (2024).

    Google Scholar 

  44. Hadid, L. Z., Sahraoui, F., Galtier, S. & Huang, S. Y. Compressible magnetohydrodynamic turbulence in the Earth’s magnetosheath: estimation of the energy cascade rate using in situ spacecraft data. Phys. Rev. Lett. 120, 055102 (2018).

    Google Scholar 

  45. Sahraoui, F., Hadid, L. & Huang, S. Magnetohydrodynamic and kinetic scale turbulence in the near-Earth space plasmas: a (short) biased review. Rev. Mod. Plasma Phys. 4, 4 (2020).

    Google Scholar 

  46. Koller, F. et al. Stability of the Earth’s dayside magnetosheath: effects of upstream solar wind structures and downstream jets. J. Geophys. Res. Space Phys. 130, e2025JA034098 (2025).

    Google Scholar 

  47. Rakhmanova, L. S., Riazantseva, M. O., Zastenker, G. N. & Yermolaev, Y. I. Large-scale solar wind phenomena affecting the turbulent cascade evolution behind the quasi-perpendicular bow shock. Universe 8, 611 (2022).

    Google Scholar 

  48. Yordanova, E., Vörös, Z., Raptis, S. & Karlsson, T. Current sheet statistics in the magnetosheath. Front. Astron. Space Sci. 7, 2 (2020).

    Google Scholar 

  49. Winarto, H. & Kunz, M. W. Triggering tearing in a forming current sheet with the mirror instability. J. Plasma Phys. 88, 905880210 (2022).

    Google Scholar 

  50. Stawarz, J. E. et al. The interplay between collisionless magnetic reconnection and turbulence. Space Sci. Rev. 220, ARTN 90 (2024).

    Google Scholar 

  51. Matthaeus, W. H. Turbulence in space plasmas: Who needs it? Phys. Plasmas 28, 032306 (2021).

    Google Scholar 

  52. Cassak, P. A., Barbhuiya, M. H. & Weldon, H. A. Pressure–strain interaction. II. Decomposition in magnetic field-aligned coordinates. Phys. Plasmas 29, 122307 (2022).

    Google Scholar 

  53. Chanteur, G. Spatial interpolation for four spacecraft: theory. in Analysis Methods for Multi-Spacecraft Data (eds Paschmann, G. & Daly, P.) 349–370 (ISSI/ESA, 1998).

  54. Roberts, O. W. et al. Estimation of the error in the calculation of the pressure-strain term: application in the terrestrial magnetosphere. J. Geophys. Res. Space Phys. 128, e2023JA031565 (2023).

    Google Scholar 

  55. Yordanova, E., Vörös, Z., Sorriso-Valvo, L., Dimmock, A. P. & Kilpua, E. K. J. A possible link between turbulence and plasma heating. Astrophys. J. 921, 65 (2021).

    Google Scholar 

  56. Khotyaintsev, Y. et al. IRFU-Matlab. Zenodo, https://doi.org/10.5281/zenodo.14525047 (2024).

  57. Vörös, Z. et al. Turbulent dynamo in the terrestrial magnetosheath, ncomms-25-30764a. Zenodo, https://doi.org/10.5281/zenodo.17780770 (2025).

Download references

Acknowledgements

The authors thank the MMS team and the MMS Science Data Center for providing high-quality data for this study. This research was funded in part by the Austrian Science Fund (FWF) under 10.55776/PAT9232923. For the purpose of Open-Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission; Z.V. and P.A.B. were also funded by the Austrian Science Fund (FWF) P 37265-N; Y.N. was funded by the German Science Foundation under project number 535057280; E.Y. was funded by the Swedish National Space Agency (SNSA) under grant 2020-00192. The work of C.S.W. was funded by the Austrian Science Fund (FWF) 10.55776/P35954. L.S.-V. was supported by the Swedish Research Council (VR) Research Grant N. 2022-03352, by the project 2022KL38BK. L.S.-V. also acknowledges the projects PRIN/PNRR-H53D23011020001 and PRIN-2022KL38BK, supported by the Italian Ministry of University and Research.

Author information

Author notes
  1. These authors contributed equally: Rumi Nakamura, Adriana Settino, Daniel Schmid, Martin Volwerk, Cyril L. Simon Wedlund, Ali Varsani, Luca Sorriso-Valvo, Philippe André Bourdin, Árpád Kis.

Authors and Affiliations

  1. Space Research Institute, Austrian Academy of Sciences, Graz, Austria

    Zoltán Vörös, Rumi Nakamura, Adriana Settino, Daniel Schmid, Martin Volwerk, Cyril L. Simon Wedlund & Ali Varsani

  2. Institute of Earth Physics and Space Science, HUN-REN, Sopron, Hungary

    Zoltán Vörös & Árpád Kis

  3. Department of Physics, Aberystwyth University, Aberystwyth, UK

    Owen Wyn Roberts

  4. Institut für Theoretische Physik, Technische Universität Braunschweig, Braunschweig, Germany

    Yasuhito Narita

  5. Max Planck Institute for Solar System Research, Göttingen, Germany

    Yasuhito Narita

  6. Swedish Institute of Space Physics, Uppsala, Sweden

    Emiliya Yordanova

  7. Institute of Physics, University of Graz, Graz, Austria

    Cyril L. Simon Wedlund & Philippe André Bourdin

  8. Space and Plasma Physics, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

    Luca Sorriso-Valvo

  9. CNR/ISTP-Istituto per la Scienza e la Tecnologia dei Plasmi, Bari, Italy

    Luca Sorriso-Valvo

  10. University of Sopron, Sopron, Hungary

    Árpád Kis

Authors
  1. Zoltán Vörös
    View author publications

    Search author on:PubMed Google Scholar

  2. Owen Wyn Roberts
    View author publications

    Search author on:PubMed Google Scholar

  3. Yasuhito Narita
    View author publications

    Search author on:PubMed Google Scholar

  4. Emiliya Yordanova
    View author publications

    Search author on:PubMed Google Scholar

  5. Rumi Nakamura
    View author publications

    Search author on:PubMed Google Scholar

  6. Adriana Settino
    View author publications

    Search author on:PubMed Google Scholar

  7. Daniel Schmid
    View author publications

    Search author on:PubMed Google Scholar

  8. Martin Volwerk
    View author publications

    Search author on:PubMed Google Scholar

  9. Cyril L. Simon Wedlund
    View author publications

    Search author on:PubMed Google Scholar

  10. Ali Varsani
    View author publications

    Search author on:PubMed Google Scholar

  11. Luca Sorriso-Valvo
    View author publications

    Search author on:PubMed Google Scholar

  12. Philippe André Bourdin
    View author publications

    Search author on:PubMed Google Scholar

  13. Árpád Kis
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Z.V. initiated this study, did the analysis, and wrote the paper. O.W.R., Y.N., and P.A.B. gave the initial idea of the LSD in the turbulent solar wind; E.Y. contributed to data preparation and analysis, writing and editing the manuscript. R.N., A.S., D.S., M.W., C.L.S.W., and A.V. contributed to the analysis methods and helped to edit the paper. L.S.V. contributed to the idea of SSD in a turbulent plasma environment. Á.K. contributed conceptual guidance on the turbulent magnetosheath that strengthened the framing of the study.

Corresponding author

Correspondence to Zoltán Vörös.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to publish

All authors give permission to publish the work.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vörös, Z., Roberts, O.W., Narita, Y. et al. Turbulent dynamo in the terrestrial magnetosheath. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69469-y

Download citation

  • Received: 23 April 2025

  • Accepted: 02 February 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69469-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing