Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Near real-time full-wave inverse design of electromagnetic devices
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Near real-time full-wave inverse design of electromagnetic devices

  • Jui-Hung Sun  ORCID: orcid.org/0009-0007-2750-79941,
  • Mohamed Elsawaf1,
  • Yifei Zheng1,
  • Ho-Chun Lin  ORCID: orcid.org/0000-0003-1255-44171,
  • Chia Wei Hsu1 &
  • …
  • Constantine Sideris2 

Nature Communications , Article number:  (2026) Cite this article

  • 2031 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational science
  • Electrical and electronic engineering

Abstract

Inverse design enables automating the discovery and optimization of devices achieving performance significantly exceeding that of traditional human-engineered designs. However, existing methodologies to inverse-design electromagnetic devices require computationally expensive and time-consuming full-wave electromagnetic simulation at each iteration or generation of large datasets for training neural-network surrogate models. This work introduces the Precomputed Numerical Green Function method, an approach for ultrafast electromagnetic inverse design. The static components of the design are incorporated into a numerical Green function obtained from a single fully-parallelized precomputation step, reducing the cost of evaluating candidate designs during optimization to only being proportional to the size of the region under modification. A low-rank matrix update technique is introduced that further decreases the cost of the method to milliseconds per iteration without any approximations or compromises in accuracy. This method is shown to have linear time complexity, reducing the total runtime for an inverse design by several orders of magnitude compared to using conventional electromagnetics solvers. The design examples considered demonstrate speedups of up to 16,000x, shortening the design process from multiple days to weeks down to minutes. The approach enables practical and ultrafast design of complex structures that are prohibitively time-consuming for prior inverse design methods.

Similar content being viewed by others

On nature-inspired design optimization of antenna structures using variable-resolution EM models

Article Open access 24 May 2023

Low-cost quasi-global optimization of expensive electromagnetic simulation models by inverse surrogates and response features

Article Open access 18 November 2022

Deep-learning enabled generalized inverse design of multi-port radio-frequency and sub-terahertz passives and integrated circuits

Article Open access 30 December 2024

Data availability

Source data are provided with this paper.

Code availability

The source code for the PNGF method is publicly available at: https://github.com/ACME-Lab-Stanford/PNGF67.

References

  1. Johnson, J. M. & Rahmat-Samii, V. Genetic algorithms in engineering electromagnetics. IEEE Antennas Propag. Mag. 39, 7–21 (1997).

    Google Scholar 

  2. Altshuler, E. E. & Linden, D. S. Wire-antenna designs using genetic algorithms. IEEE Antennas Propag. Mag. 39, 33–43 (1997).

    Google Scholar 

  3. Robinson, J. & Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52, 397–407 (2004).

    Google Scholar 

  4. Stadler, S. & Igel, J. Developing realistic FDTD GPR antenna surrogates by means of particle swarm optimization. IEEE Trans. Antennas Propag. 70, 4259–4272 (2022).

    Google Scholar 

  5. Jin, N. & Rahmat-Samii, Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Antennas Propag. 55, 556–567 (2007).

    Google Scholar 

  6. Lalau-Keraly, C. M., Bhargava, S., Miller, O. D. & Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design. Opt. Express 21, 21693–21701 (2013).

    Google Scholar 

  7. Zhu, R. et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat. Commun. 12, 2974 (2021).

    Google Scholar 

  8. Naseri, P. & Hum, S. V. A generative machine learning-based approach for inverse design of multilayer metasurfaces. IEEE Trans. Antennas Propag. 69, 5725–5739 (2021).

    Google Scholar 

  9. Hou, J. et al. Customized inverse design of metamaterial absorber based on target-driven deep learning method. IEEE Access 8, 211849–211859 (2020).

    Google Scholar 

  10. Mohammadi Estakhri, N., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).

    Google Scholar 

  11. Karahan, E. A. et al. Deep-learning enabled generalized inverse design of multi-port radio-frequency and sub-terahertz passives and integrated circuits. Nat. Commun. 15, 10734 (2024).

    Google Scholar 

  12. Karahan, E. A., Liu, Z. & Sengupta, K. Deep-learning-based inverse-designed millimeter-wave passives and power amplifiers. IEEE J. Solid-State Circuits 58, 3074–3088 (2023).

    Google Scholar 

  13. Yang, X. et al. Circularly polarized antenna array synthesis based on machine-learning-assisted surrogate modeling. IEEE Trans. Antennas Propag. 72, 1469–1482 (2024).

    Google Scholar 

  14. Zhu, E. et al. Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations. Nat. Commun. 16, 2251 (2025).

    Google Scholar 

  15. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018).

    Google Scholar 

  16. Li, Z. et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).

    Google Scholar 

  17. Hughes, T. W., Minkov, M., Williamson, I. A. D. & Fan, S. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photonics 5, 4781–4787 (2018).

    Google Scholar 

  18. Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4, 4206 (2018).

    Google Scholar 

  19. Roberts, G. et al. 3D-patterned inverse-designed mid-infrared metaoptics. Nat. Commun. 14, 2768 (2023).

    Google Scholar 

  20. Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2021).

    Google Scholar 

  21. Camacho, M., Edwards, B. & Engheta, N. A single inverse-designed photonic structure that performs parallel computing. Nat. Commun. 12, 1466 (2021).

    Google Scholar 

  22. Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics 9, 374–377 (2015).

    Google Scholar 

  23. Wiecha, P. R. & Muskens, O. L. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett. 20, 329–338 (2020).

    Google Scholar 

  24. Grbčić, L. et al. Inverse design of photonic surfaces via multi fidelity ensemble framework and femtosecond laser processing. npj Comput. Mater. 11, 1–13 (2025).

    Google Scholar 

  25. Sun, A. et al. Edge-guided inverse design of digital metamaterial-based mode multiplexers for high-capacity multi-dimensional optical interconnect. Nat. Commun. 16, 2372 (2025).

    Google Scholar 

  26. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 361, 360–365 (2018).

    Google Scholar 

  27. Kumar, S., Tan, S., Zheng, L. & Kochmann, D. M. Inverse-designed spinodoid metamaterials. npj Comput. Mater. 6, 1–10 (2020).

    Google Scholar 

  28. Ha, C. S. et al. Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning. Nat. Commun. 14, 5765 (2023).

    Google Scholar 

  29. Coli, G. M., Boattini, E., Filion, L. & Dijkstra, M. Inverse design of soft materials via a deep learning-based evolutionary strategy. Sci. Adv. 8, 6731 (2022).

    Google Scholar 

  30. Zunger, A. Inverse design in search of materials with target functionalities. Nat. Rev. Chem. 2, 1–16 (2018).

    Google Scholar 

  31. Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proc. ICNN’95 - International Conference on Neural Networks Vol. 4, 1942–19484. https://doi.org/10.1109/ICNN.1995.488968 (1995).

  32. Alizadeh, R., Allen, J. K. & Mistree, F. Managing computational complexity using surrogate models: a critical review. Res. Eng. Des. 31, 275–298 (2020).

    Google Scholar 

  33. Ludick, D. J. et al. Efficient analysis of large aperiodic antenna arrays using the domain Green’s Function Method. IEEE Trans. Antennas Propag. 62, 1579–1588 (2014).

    Google Scholar 

  34. Verweij, S., Liu, V. & Fan, S. Accelerating simulation of ensembles of locally differing optical structures via a Schur complement domain decomposition. Opt. Lett. 39, 6458–6461 (2014).

    Google Scholar 

  35. Gao, H.-W., Wang, S., Sheng, X.-Q. & Peng, Z. Rapid numerical analysis of electrically large PEC platforms with local variations via a platform Green’s Function Method. IEEE Trans. Antennas Propag. 70, 9544–9556 (2022).

    Google Scholar 

  36. Markkanen, J., Yla-Oijala, P. & Sihvola, A. Discretization of volume integral equation formulations for extremely anisotropic materials. IEEE Trans. Antennas Propag. 60, 5195–5202 (2012).

    Google Scholar 

  37. Harrington, R. F. The method of moments in electromagnetics. J. Electromagn. Waves Appl. 1, 181–200 (1987).

    Google Scholar 

  38. Lin, H.-C., Wang, Z. & Hsu, C. W. Fast multi-source nanophotonic simulations using augmented partial factorization. Nat. Comput. Sci. 2, 815–822 (2022).

    Google Scholar 

  39. Zhang, F. (ed.). The Schur Complement and Its Applications. Numerical Methods and Algorithms Vol. 4 (Springer, 2005).

  40. Ansys Canada Ltd. Understanding the mode overlap calculation. https://optics.ansys.com/hc/en-us/articles/360034396834-Understanding-the-mode-overlap-calculation (2024).

  41. Taflove, A. & Hagness, S.C. Computational Electrodynamics: The Finite-difference Time-domain Method 3rd edn. (Artech House, 2005).

  42. Bayin, S. Mathematical Methods in Science and Engineering (Wiley, 2006).

  43. Budhu, J. & Grbic, A. Fast and accurate optimization of metasurfaces with gradient descent and the Woodbury Matrix Identity. IEEE Trans. Antennas Propag. 71, 7679–7683 (2023).

    Google Scholar 

  44. Jiao, Y., Fan, S. & Miller, D. A. B. Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator. Opt. Lett. 30, 141–143 (2005).

    Google Scholar 

  45. Capek, M., Jelinek, L. & Gustafsson, M. Shape synthesis based on topology sensitivity. IEEE Trans. Antennas Propag. 67, 3889–3901 (2019).

    Google Scholar 

  46. Ansys, Inc. Ansys HFSS, version 2025 R1. https://www.ansys.com/products/electronics/ansys-hfss (2025).

  47. Dassault Systèmes. CST Studio Suite, version 2025. https://www.3ds.com/products/simulia/cst-studio-suite (2025).

  48. Kimionis, J., Georgiadis, A., Daskalakis, S. N. & Tentzeris, M. M. A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates. Nat. Electron. 4, 439–446 (2021).

    Google Scholar 

  49. Wu, G.-B. et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves. Nat. Commun. 14, 5155 (2023).

    Google Scholar 

  50. Zhao, W. et al. 2D Titanium carbide printed flexible ultrawideband monopole antenna for wireless communications. Nat. Commun. 14, 278 (2023).

    Google Scholar 

  51. Ahmad, A., Choi, D. -y & Ullah, S. A compact two elements MIMO antenna for 5G communication. Sci. Rep. 12, 3608 (2022).

    Google Scholar 

  52. Zheng, Y. & Sideris, C. Ultra-fast simulation and inverse design of metallic antennas. In Proc. 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023 351–354. https://doi.org/10.1109/IMS37964.2023.10187915 (2023).

  53. Islam, S., Zada, M. & Yoo, H. Highly compact integrated Sub-6 GHz and millimeter-wave band antenna array for 5G smartphone communications. IEEE Trans. Antennas Propag. 70, 11629–11638 (2022).

    Google Scholar 

  54. Liu, L., Cheung, S. W. & Yuk, T. I. Compact MIMO Antenna for portable devices in UWB applications. IEEE Trans. Antennas Propag. 61, 4257–4264 (2013).

    Google Scholar 

  55. Liu, W. E. I., Chen, Z. N., Qing, X., Shi, J. & Lin, F. H. Miniaturized wideband metasurface antennas. IEEE Trans. Antennas Propag. 65, 7345–7349 (2017).

    Google Scholar 

  56. Kibaroglu, K., Sayginer, M., Phelps, T. & Rebeiz, G. M. A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8-12-Gb/s 5G link at 300 meters without any calibration. IEEE Trans. Microw. Theory Tech. 66, 5796–5811 (2018).

    Google Scholar 

  57. Dadgarpour, A., Zarghooni, B., Virdee, B. S. & Denidni, T. A. One- and two-dimensional beam-switching antenna for millimeter-wave MIMO applications. IEEE Trans. Antennas Propag. 64, 564–573 (2016).

    Google Scholar 

  58. Karmokar, D. K., Esselle, K. P. & Hay, S. G. Fixed-frequency beam steering of microstrip leaky-wave antennas using binary switches. IEEE Trans. Antennas Propag. 64, 2146–2154 (2016).

    Google Scholar 

  59. Yang, G.-W. et al. A compact reconfigurable microstrip antenna with multidirectional beam and multipolarization. IEEE Trans. Antennas Propag. 67, 1358–1363 (2019).

    Google Scholar 

  60. Mackertich-Sengerdy, G., Campbell, S. D. & Werner, D. H. Tailored compliant mechanisms for reconfigurable electromagnetic devices. Nat. Commun. 14, 683 (2023).

    Google Scholar 

  61. Uchimura, H., Takenoshita, T. & Fujii, M. Development of a “laminated waveguide”. IEEE Trans. Microw. Theory Tech. 46, 2438–2443 (1998).

    Google Scholar 

  62. Deslandes, D. & Wu, K. Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 54, 2516–2526 (2006).

    Google Scholar 

  63. Deslandes, D. & Wu, K. Integrated microstrip and rectangular waveguide in planar form. IEEE Microw. Wirel. Compon. Lett. 11, 68–70 (2001).

    Google Scholar 

  64. Lee, J.-H. et al. A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies. IEEE Trans. Microw. Theory Tech. 54, 2925–2936 (2006).

    Google Scholar 

  65. Elsawaf, M.H.A. & Sideris, C. Concurrent multi-mode excitation for mode division multiplexing over substrate integrated waveguides. In Proc. 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023 505–508. https://doi.org/10.1109/IMS37964.2023.10188009 (2023).

  66. Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y. & Koster, J. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15–41 (2001).

    Google Scholar 

  67. Sun, R. & Sideris, C. Precomputed numerical green function method: near real-time full-wave electromagnetic inverse design. Zenodo, https://doi.org/10.5281/zenodo.18396471 (2026).

Download references

Acknowledgements

The authors gratefully acknowledge support by the Air Force Office of Scientific Research (FA9550-20-1-0087, C.S., and FA9550-25-1-0020, C.S.) and the National Science Foundation (CCF-2047433, C.S.).

Author information

Authors and Affiliations

  1. Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA

    Jui-Hung Sun, Mohamed Elsawaf, Yifei Zheng, Ho-Chun Lin & Chia Wei Hsu

  2. Department of Electrical Engineering, Stanford University, Stanford, CA, USA

    Constantine Sideris

Authors
  1. Jui-Hung Sun
    View author publications

    Search author on:PubMed Google Scholar

  2. Mohamed Elsawaf
    View author publications

    Search author on:PubMed Google Scholar

  3. Yifei Zheng
    View author publications

    Search author on:PubMed Google Scholar

  4. Ho-Chun Lin
    View author publications

    Search author on:PubMed Google Scholar

  5. Chia Wei Hsu
    View author publications

    Search author on:PubMed Google Scholar

  6. Constantine Sideris
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.S. conceived the idea and supervised the work. J.H.S. and Y.Z. performed numerical simulations. C.S., J.H.S., and Y.Z. carried out the inverse design of the example studies. M.E. measured the fabricated devices. H.C.L. and C.W.H. implemented augmented partial factorization for precomputations. J.H.S. and C.S. participated in the writing of this manuscript.

Corresponding author

Correspondence to Constantine Sideris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Geun Ho Ahn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JH., Elsawaf, M., Zheng, Y. et al. Near real-time full-wave inverse design of electromagnetic devices. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69477-y

Download citation

  • Received: 08 February 2025

  • Accepted: 28 January 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69477-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics