Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
High-throughput chemical proteomics workflow for profiling protein citrullination dynamics
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

High-throughput chemical proteomics workflow for profiling protein citrullination dynamics

  • Rebecca Meelker González1,
  • Sophia Laposchan  ORCID: orcid.org/0000-0002-0492-840X1,
  • Erik Riedel1,
  • Anna Fürst2,
  • Naomi O’Sullivan  ORCID: orcid.org/0009-0007-4594-02223,4,
  • Wassim Gabriel  ORCID: orcid.org/0000-0001-6440-97945,
  • Mathias Wilhelm  ORCID: orcid.org/0000-0002-9224-32585,6,
  • Percy A. Knolle  ORCID: orcid.org/0000-0003-2983-04142,
  • Guillaume Médard  ORCID: orcid.org/0000-0002-4782-40297,
  • Bernhard Kuster  ORCID: orcid.org/0000-0002-9094-16773,8 &
  • …
  • Chien-Yun Lee  ORCID: orcid.org/0000-0001-7697-63741 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Post-translational modifications
  • Proteomic analysis

Abstract

Citrullination is a post-translational modification implicated in autoimmune and inflammatory diseases, yet its low abundance and lack of effective enrichment tools have limited proteome-wide analysis. Here, we develop a robust chemical proteomics workflow with improved specificity and throughput. This method builds upon glyoxal-based derivatization and incorporates a cleavable biotin linker for efficient peptide enrichment, release, and identification via mass spectrometry. Benchmarking demonstrates a > 10-fold increase in the detection of citrullinated peptides at sub-0.1% abundance. Applying this workflow to primary human neutrophils, we successfully monitor dynamic regulation, quantifying dose-dependent activation and inhibition by the PAD4 inhibitor GSK484. Furthermore, stimulation with the fungal pathogen Candida albicans reveals a “core citrullinome” conserved across distinct stimuli. Notably, extensive citrullination of linker histone H1 and structural proteins like lamin B1 suggests broad remodeling of cell architecture during NET formation. This workflow enables proteome-wide mapping of citrullination sites and facilitates its study across diverse biological contexts.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org)69 via the MassIVE partner repository with the dataset identifier MSV000097617 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession= MSV000097617]. All processed data generated in this study are provided in the Supplementary Information, Supplementary Data, and Source Data file. Source data are provided with this paper.

References

  1. Zhong, Q. et al. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (2020) 4, e261 (2023).

    Google Scholar 

  2. Doll, S. & Burlingame, A. L. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem. Biol. 10, 63–71 (2015).

    Google Scholar 

  3. Christophorou, M. A. The virtues and vices of protein citrullination. R. Soc. Open Sci. 9, 220125 (2022).

    Google Scholar 

  4. Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J. & Pruijn, G. J. PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. Bioessays 25, 1106–1118 (2003).

    Google Scholar 

  5. Hsu, P. C. et al. Vimentin is involved in peptidylarginine deiminase 2-induced apoptosis of activated Jurkat cells. Mol. Cells 37, 426–434 (2014).

    Google Scholar 

  6. Clancy, K. W. et al. Citrullination/methylation crosstalk on histone H3 regulates ER-target gene transcription. ACS Chem. Biol. 12, 1691–1702 (2017).

    Google Scholar 

  7. György, B., Tóth, E., Tarcsa, E., Falus, A. & Buzás, E. I. Citrullination: A posttranslational modification in health and disease. Int. J. Biochem. Cell Biol. 38, 1662–1677 (2006).

    Google Scholar 

  8. Witalison, E. E., Thompson, P. R. & Hofseth, L. J. Protein arginine deiminases and associated citrullination: Physiological functions and diseases associated with dysregulation. Curr. Drug Targets 16, 700–710 (2015).

    Google Scholar 

  9. Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184, 205–213 (2009).

    Google Scholar 

  10. Harauz, G. & Musse, A. A. A tale of two citrullines-structural and functional aspects of myelin basic protein deimination in health and disease. Neurochem Res 32, 137–158 (2007).

    Google Scholar 

  11. Chang, X. & Han, J. Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol. Carcinog. 45, 183–196 (2006).

    Google Scholar 

  12. Griffante, G. et al. Human cytomegalovirus-induced host protein citrullination is crucial for viral replication. Nat. Commun. 12, 3910 (2021).

    Google Scholar 

  13. van Venrooij, W. J., van Beers, J. J. & Pruijn, G. J. Anti-CCP antibodies: The past, the present and the future. Nat. Rev. Rheumatol. 7, 391–398 (2011).

    Google Scholar 

  14. Lee, C.-Y. et al. Mining the human tissue proteome for protein citrullination. Mol. Cell Proteom. 17, 1378–1391 (2018).

    Google Scholar 

  15. Wang, X. et al. Accurate identification of deamidation and citrullination from global shotgun proteomics data using a dual-search delta score strategy. J. Proteome Res 19, 1863–1872 (2020).

    Google Scholar 

  16. Hao, G. et al. Neutral loss of isocyanic acid in peptide CID spectra: A novel diagnostic marker for mass spectrometric identification of protein citrullination. J. Am. Soc. Mass Spectrom. 20, 723–727 (2009).

    Google Scholar 

  17. Maurais, A. J. et al. A Streamlined Data Analysis Pipeline for the Identification of Sites of Citrullination. Biochemistry 60, 2902–2914 (2021).

    Google Scholar 

  18. Gabriel, W. et al. Deep learning enhances precision of citrullination identification in human and plant tissue proteomes. Mol. Cell Proteomics, 24, 100924 (2025).

  19. Rebak, A. S. et al. A quantitative and site-specific atlas of the citrullinome reveals widespread existence of citrullination and insights into PADI4 substrates. Nat. Struct. Mol. Biol. 31, 977–995 (2024).

    Google Scholar 

  20. Zhang, Y. et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell Proteom. 4, 1240–1250 (2005).

    Google Scholar 

  21. Xu, G., Paige, J. S. & Jaffrey, S. R. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat. Biotechnol. 28, 868–873 (2010).

    Google Scholar 

  22. Hensen, S. M. & Pruijn, G. J. Methods for the detection of peptidylarginine deiminase (PAD) activity and protein citrullination. Mol. Cell Proteom. 13, 388–396 (2014).

    Google Scholar 

  23. Tutturen, A. E. et al. A technique for the specific enrichment of citrulline-containing peptides. Anal. Biochem 403, 43–51 (2010).

    Google Scholar 

  24. Tutturen, A. E., Holm, A. & Fleckenstein, B. Specific biotinylation and sensitive enrichment of citrullinated peptides. Anal. Bioanal. Chem. 405, 9321–9331 (2013).

    Google Scholar 

  25. Tutturen, A. E., Fleckenstein, B. & de Souza, G. A. Assessing the citrullinome in rheumatoid arthritis synovial fluid with and without enrichment of citrullinated peptides. J. Proteome Res 13, 2867–2873 (2014).

    Google Scholar 

  26. Lewallen, D. M. et al. Chemical proteomic platform to identify citrullinated proteins. ACS Chem. Biol. 10, 2520–2528 (2015).

    Google Scholar 

  27. Shi, Y. et al. Enabling global analysis of protein citrullination via biotin thiol tag-assisted mass spectrometry. Anal. Chem. 94, 17895–17903 (2022).

    Google Scholar 

  28. Holm, A. et al. Specific modification of peptide-bound citrulline residues. Anal. Biochem. 352, 68–76 (2006).

    Google Scholar 

  29. Li, Y. et al. Nuclear envelope rupture and NET formation is driven by PKCα-mediated lamin B disassembly. EMBO Rep. 21, e48779 (2020).

    Google Scholar 

  30. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Google Scholar 

  31. Yang, Y. & Verhelst, S. H. L. Cleavable trifunctional biotin reagents for protein labelling, capture and release. Chem. Commun. 49, 5366–5368 (2013).

    Google Scholar 

  32. Li, Y., Hoskins, J. N., Sreerama, S. G. & Grayson, S. M. MALDI-TOF mass spectral characterization of polymers containing an azide group: Evidence of metastable ions. Macromolecules 43, 6225–6228 (2010).

    Google Scholar 

  33. Enjalbal, C. et al. MALDI-TOF MS analysis of soluble PEG based multi-step synthetic reaction mixtures with automated detection of reaction failure. J. Am. Soc. Mass Spectrom. 16, 670–678 (2005).

    Google Scholar 

  34. Zolg, D. P. et al. Proteometools: systematic characterization of 21 post-translational protein modifications by liquid chromatography tandem mass spectrometry (LC-MS/MS) using synthetic peptides. Mol. Cell Proteom. 17, 1850–1863 (2018).

    Google Scholar 

  35. Yu, F. et al. Identification of modified peptides using localization-aware open search. Nat. Commun. 11, 4065 (2020).

    Google Scholar 

  36. Michalski, A., Neuhauser, N., Cox, J. & Mann, M. A systematic investigation into the nature of tryptic HCD spectra. J. Proteome Res 11, 5479–5491 (2012).

    Google Scholar 

  37. Polasky, D. A. et al. MSFragger-Labile: A flexible method to improve labile PTM analysis in proteomics. Mol. Cell Proteom. 22, 100538 (2023).

    Google Scholar 

  38. Sanborn, B. M. & Hein, G. E. The interaction of trypsin with neutral substrates and modifiers. Biochemistry 7, 3616–3624 (1968).

    Google Scholar 

  39. Ishigami, A. et al. Human peptidylarginine deiminase type II: Molecular cloning, gene organization, and expression in human skin. Arch. Biochem Biophys. 407, 25–31 (2002).

    Google Scholar 

  40. Yang, L., Tan, D. & Piao, H. Myelin basic protein citrullination in multiple sclerosis: A potential therapeutic target for the pathology. Neurochem Res 41, 1845–1856 (2016).

    Google Scholar 

  41. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Google Scholar 

  42. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    Google Scholar 

  43. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra140 (2013).

    Google Scholar 

  44. Dwivedi, N. et al. Deimination of linker histones links neutrophil extracellular trap release with autoantibodies in systemic autoimmunity. FASEB J. 28, 2840–2851 (2014).

    Google Scholar 

  45. de Bont, C. M., Koopman, W. J. H., Boelens, W. C. & Pruijn, G. J. M. Stimulus-dependent chromatin dynamics, citrullination, calcium signalling and ROS production during NET formation. Biochim Biophys. Acta Mol. Cell Res. 1865, 1621–1629 (2018).

    Google Scholar 

  46. Bayer, F. P., Gander, M., Kuster, B. & The, M. CurveCurator: A recalibrated F-statistic to assess, classify, and explore significance of dose-response curves. Nat. Commun. 14, 7902 (2023).

    Google Scholar 

  47. Christophorou, M. A. et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507, 104–108 (2014).

    Google Scholar 

  48. Reis, L. R. et al. Citrullination of actin-ligand and nuclear structural proteins, cytoskeleton reorganization and protein redistribution across cellular fractions are early events in ionomycin-induced NETosis. Redox Biol. 64, 102784 (2023).

    Google Scholar 

  49. Castro-Ochoa, K. F., Guerrero-Fonseca, I. M. & Schnoor, M. Hematopoietic cell-specific lyn substrate (HCLS1 or HS1): A versatile actin-binding protein in leukocytes. J. Leukoc. Biol. 105, 881–890 (2019).

    Google Scholar 

  50. Trendel, J. et al. The human proteome with direct physical access to DNA. Cell 188, 4424–4440 e4417 (2025).

    Google Scholar 

  51. Turgay, Y. et al. The molecular architecture of lamins in somatic cells. Nature 543, 261–264 (2017).

    Google Scholar 

  52. Chang, L. et al. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells. Protein Cell 13, 258–280 (2022).

    Google Scholar 

  53. Høie, M. H. et al. NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning. Nucleic Acids Res 50, W510–w515 (2022).

    Google Scholar 

  54. Bludau, I. et al. The structural context of posttranslational modifications at a proteome-wide scale. PLoS Biol. 20, e3001636 (2022).

    Google Scholar 

  55. Lewis, H. D. et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat. Chem. Biol. 11, 189–191 (2015).

    Google Scholar 

  56. Kenny, E. F. et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife 6, e24437 (2017).

  57. Lazear, M. R. Sage: An open-source tool for fast proteomics searching and quantification at scale. J. Proteome Res. 22, 3652–3659 (2023).

    Google Scholar 

  58. Moscarello, M. A., Wood, D. D., Ackerley, C. & Boulias, C. Myelin in multiple sclerosis is developmentally immature. J. Clin. Invest 94, 146–154 (1994).

    Google Scholar 

  59. Tilley, D. O. et al. Histone H3 clipping is a novel signature of human neutrophil extracellular traps. Elife 11, e68283 (2022).

  60. Fyodorov, D. V., Zhou, B. R., Skoultchi, A. I. & Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 19, 192–206 (2018).

    Google Scholar 

  61. Wang, D., Zhang, Y., Meng, Q. & Yu, X. AAgAtlas 1.0: A database of human autoantigens extracted from biomedical literature. Methods Mol. Biol. 2131, 365–374 (2020).

    Google Scholar 

  62. Wanigasekara, M. S. K., Huang, X., Chakrabarty, J. K., Bugarin, A. & Chowdhury, S. M. Arginine-selective chemical labeling approach for identification and enrichment of reactive arginine residues in proteins. ACS Omega 3, 14229–14235 (2018).

    Google Scholar 

  63. Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019).

    Google Scholar 

  64. Pereira, H. A. & Hosking, C. S. The role of complement and antibody in opsonization and intracellular killing of Candida albicans. Clin. Exp. Immunol. 57, 307–314 (1984).

    Google Scholar 

  65. Brademan, D. R., Riley, N. M., Kwiecien, N. W. & Coon, J. J. Interactive peptide spectral annotator: A versatile web-based tool for proteomic applications. Mol. Cell Proteom. 18, S193–s201 (2019).

    Google Scholar 

  66. Neuhauser, N., Michalski, A., Cox, J. & Mann, M. Expert system for computer-assisted annotation of MS/MS spectra. Mol. Cell Proteom. 11, 1500–1509 (2012).

    Google Scholar 

  67. O’Shea, J. P. et al. pLogo: A probabilistic approach to visualizing sequence motifs. Nat. Methods 10, 1211–1212 (2013).

    Google Scholar 

  68. Szklarczyk, D. et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2023).

    Google Scholar 

  69. Deutsch, E. W. et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 51, D1539–D1548 (2023).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Christina Ludwig, Dr. Andreas Zellner, Dr. Polina Prokofeva, Ms. Susanne Wudy, Mr. Genc Haljiti, Prof. Dr. Thomas Skurk, Dr. Kurt Rack, and members from the Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS) and the Chair of Proteomics and Bioanalytics for their valuable assistance and insightful discussions. This work was funded by the German Federal Ministry of Education and Research: FKZ031L0215 (YIG-SysNS; C.Y.L.); FKZ161L0214A (CLINSPECT-M; B.K.); FKZ03LW0243K (CLINSPECT-M-2; B.K.) and ERC Starting Grant (grant number 101077037; M.W.). The Orbitrap Fusion Lumos and Orbitrap Astral mass spectrometers used in this study were funded in part by the German Research Foundation (DFG-INST 95/1436-1 FUGG & DFG-INST 95/1859-1 FUGG). The graphical illustrations were created with BioRender.com.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Young Investigator Group: Mass Spectrometry in Systems Neurosciences, School of Life Sciences, Technical University of Munich, Freising, Germany

    Rebecca Meelker González, Sophia Laposchan, Erik Riedel & Chien-Yun Lee

  2. Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany

    Anna Fürst & Percy A. Knolle

  3. Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany

    Naomi O’Sullivan & Bernhard Kuster

  4. Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany

    Naomi O’Sullivan

  5. Computational Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany

    Wassim Gabriel & Mathias Wilhelm

  6. Munich Data Science Institute, Technical University of Munich, Garching, Germany

    Mathias Wilhelm

  7. Proteomics Core Facility, School of Science, National and Kapodistrian University of Athens, Athens, Greece

    Guillaume Médard

  8. German Cancer Consortium, Partner Site Munich, Munich, Germany

    Bernhard Kuster

Authors
  1. Rebecca Meelker González
    View author publications

    Search author on:PubMed Google Scholar

  2. Sophia Laposchan
    View author publications

    Search author on:PubMed Google Scholar

  3. Erik Riedel
    View author publications

    Search author on:PubMed Google Scholar

  4. Anna Fürst
    View author publications

    Search author on:PubMed Google Scholar

  5. Naomi O’Sullivan
    View author publications

    Search author on:PubMed Google Scholar

  6. Wassim Gabriel
    View author publications

    Search author on:PubMed Google Scholar

  7. Mathias Wilhelm
    View author publications

    Search author on:PubMed Google Scholar

  8. Percy A. Knolle
    View author publications

    Search author on:PubMed Google Scholar

  9. Guillaume Médard
    View author publications

    Search author on:PubMed Google Scholar

  10. Bernhard Kuster
    View author publications

    Search author on:PubMed Google Scholar

  11. Chien-Yun Lee
    View author publications

    Search author on:PubMed Google Scholar

Contributions

G.M., B.K., and C.Y.L. conceptualized the study. R.M.G. and C.Y.L. designed experiments. R.M.G. performed experiments on development of the methodology. R.M.G., S.L., E.R., A.F., and N.O. performed experiments on biological samples. R.M.G., S.L., W.G., and C.Y.L. analyzed the data. M.W., P.A.K., and B.K. provided analysis tools, animal samples, and instrumentation. R.M.G. and C.Y.L. wrote the manuscript with input from all authors. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Chien-Yun Lee.

Ethics declarations

Competing interests

B.K. and M.W. are non-operational co-founders and shareholders of MSAID. All other authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Felipe Andrade and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Supplementary Data 10

Supplementary Data 11

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meelker González, R., Laposchan, S., Riedel, E. et al. High-throughput chemical proteomics workflow for profiling protein citrullination dynamics. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69490-1

Download citation

  • Received: 05 May 2025

  • Accepted: 03 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69490-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing