Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Identification and structural characterization of anthrax toxin receptor 2 as the Clostridium perfringens NetF receptor
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Identification and structural characterization of anthrax toxin receptor 2 as the Clostridium perfringens NetF receptor

  • Chang Wang  ORCID: orcid.org/0000-0002-9539-84821,2 na1,
  • Filippo Cattalani  ORCID: orcid.org/0000-0001-8392-07152,3 na1,
  • Ioan Iacovache  ORCID: orcid.org/0000-0001-8470-50561 na1,
  • Arunasalam Naguleswaran  ORCID: orcid.org/0000-0002-9509-485X3,
  • Faezeh Farhoosh2,3,
  • Jan Franzen  ORCID: orcid.org/0000-0002-6481-08252,3,
  • Laurence Abrami  ORCID: orcid.org/0000-0002-1774-04814,
  • F. Gisou van der Goot  ORCID: orcid.org/0000-0002-8522-274X4,
  • Horst Posthaus  ORCID: orcid.org/0000-0002-4579-74933 na2 &
  • …
  • Benoît Zuber  ORCID: orcid.org/0000-0001-7725-55791 na2 

Nature Communications , Article number:  (2026) Cite this article

  • 766 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacteriology
  • Cryoelectron microscopy
  • Mechanisms of disease

Abstract

Hemolysin β-pore-forming toxins (βPFTs) are key virulence factors of Clostridium perfringens, associated with severe diseases in humans and animals. Yet, the mechanisms by which Clostridium βPFTs recognize and engage specific target cells remain poorly understood. Here, we identify the cellular receptor for C. perfringens necrotizing enteritis toxin F (NetF), a recently discovered toxin implicated in severe enteritis in dogs and foals. We show that NetF binds to the same receptor as anthrax toxin, namely ANTXR2. Using cryo-electron microscopy, we determined the structure of the oligomeric NetF pre-pore as well as the transmembrane pore, both alone and in complex with the extracellular domain of ANTXR2. Unlike anthrax toxin, which binds to the apical MIDAS motif of ANTXR2 – as does the natural ANTXR2 ligand collagen type VI – NetF engages the receptor laterally, spanning both the von Willebrand A and the Ig-like domains. This interaction positions the toxin near the membrane, facilitating contact with membrane lipids and promoting transmembrane pore formation. Our findings uncover key principles of hemolysin βPFT-receptor recognition and advance our understanding of how pathogenic bacteria use these toxins to breach host defenses.

Similar content being viewed by others

Particular genomic and virulence traits associated with preterm infant-derived toxigenic Clostridium perfringens strains

Article Open access 25 May 2023

Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism

Article Open access 22 June 2021

Immunization of broiler chickens with five newly identified surface-exposed proteins unique to Clostridium perfringens causing necrotic enteritis

Article Open access 31 March 2023

Data availability

The RNA-seq data generated in this study have been deposited in the European Nucleotide Archive under accession PRJEB78819. The cryo-EM maps and their respective models generated in this study have been deposited are available in the worldwide Protein Data Bank and the EM Data Bank under accession 9RSM (NetF prepore model) EMD-54221 (NetF prepore map) 9RSU (NetF pore model) EMD-54226 (NetF pore map) 9RT2 (NetF-ANTXR2 C4 model) 9RT4 (NetF-ANTXR2 local refinement focused model) EMD-54238 (NetF-ANTXR2 C4 map) EMD-54245 (NetF-ANTXR2 local refinement focused map). The AlphaFold predictions used in this study are available as additional data in the supplemental material and supplemental source data file. Source Data are provided as a Source Data file. Source data are provided with this paper.

References

  1. Songer, J. G. In Handbook on Clostridia (ed Dürre J.) Ch. 22, 527−544 (Taylor & Francis Group, 2005).

  2. Songer, J. G. Clostridia as agents of zoonotic disease. Vet. Microbiol 140, 399–404 (2010).

    Google Scholar 

  3. Uzal, F. A. et al. Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe 53, 11–20 (2018).

    Google Scholar 

  4. Popoff, M. R. & Bouvet, P. Clostridial toxins. Fut. Microbiol 4, 1021–1064 (2009).

    Google Scholar 

  5. Rood, J. I. et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 53, 5–10 (2018).

    Google Scholar 

  6. Mehdizadeh Gohari, I. et al. A novel pore-forming toxin in type A Clostridium perfringens is associated with both fatal canine hemorrhagic gastroenteritis and fatal foal necrotizing enterocolitis. PLoS One 10, e0122684 (2015).

    Google Scholar 

  7. Finley, A. et al. Prevalence of netF-positive clostridium perfringens in foals in southwestern Ontario. Can. J. Vet. Res. 80, 242–244 (2016).

    Google Scholar 

  8. Leipig-Rudolph, M. et al. Intestinal lesions in dogs with acute hemorrhagic diarrhea syndrome associated with netF-positive Clostridium perfringens type A. J. Vet. Diagn. Invest 30, 495–503 (2018).

    Google Scholar 

  9. Mehdizadeh Gohari, I. et al. NetF-positive clostridium perfringens in neonatal foal necrotising enteritis in Kentucky. Vet. Rec. 178, 216 (2016).

    Google Scholar 

  10. Mehdizadeh Gohari, I., Unterer, S., Whitehead, A. E. & Prescott, J. F. NetF-producing Clostridium perfringens and its associated diseases in dogs and foals. J. Vet. Diagn. Invest 32, 230–238 (2020).

    Google Scholar 

  11. Sindern, N. et al. Prevalence of Clostridium perfringens netE and netF toxin genes in the feces of dogs with acute hemorrhagic diarrhea syndrome. J. Vet. Intern Med 33, 100–105 (2019).

    Google Scholar 

  12. Mehdizadeh Gohari, I., Brefo-Mensah, E. K., Palmer, M., Boerlin, P. & Prescott, J. F. Sialic acid facilitates binding and cytotoxic activity of the pore-forming Clostridium perfringens NetF toxin to host cells. PLoS One 13, e0206815 (2018).

    Google Scholar 

  13. Dal Peraro, M. & van der Goot, F. G. Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol 14, 77–92 (2016).

    Google Scholar 

  14. Jolivet-Reynaud, C., Hauttecoeur, B. & Alouf, J. E. Interaction of Clostridium perfringens delta toxin with erythrocyte and liposome membranes and relation with the specific binding to the ganglioside GM2. Toxicon 27, 1113–1126 (1989).

    Google Scholar 

  15. Bruggisser, J. et al. CD31 (PECAM-1) serves as the endothelial cell-specific receptor of clostridium perfringens beta-toxin. Cell Host Microbe. 28, 68–78.e6 (2020).

  16. Huyet, J. et al. Structural Insights into Clostridium perfringens Delta Toxin Pore Formation. PLoS One 8, e66673 (2013).

    Google Scholar 

  17. Savva, C. G. et al. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J. Biol. Chem. 288, 3512–3522 (2013).

    Google Scholar 

  18. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

  19. Galdiero, S. & Gouaux, E. High resolution crystallographic studies of alpha-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: implication for understanding protein-lipid interactions. Protein Sci. 13, 1503–1511 (2004).

    Google Scholar 

  20. Potrich, C. et al. The influence of membrane lipids in Staphylococcus aureus gamma-hemolysins pore formation. J. Membr. Biol. 227, 13–24 (2009).

    Google Scholar 

  21. Bruggisser, J. et al. Cryo-EM structure of the octameric pore of Clostridium perfringens beta-toxin. EMBO Rep. 23, e54856 (2022).

    Google Scholar 

  22. Choate, L. A. et al. Multiple stages of evolutionary change in anthrax toxin receptor expression in humans. Nat. Commun. 12, 6590 (2021).

    Google Scholar 

  23. Fedotova, A. A., Bonchuk, A. N., Mogila, V. A. & Georgiev, P. G. C2H2 zinc finger proteins: The largest but poorly explored family of higher eukaryotic transcription factors. Acta Nat. 9, 47–58 (2017).

    Google Scholar 

  24. Gosztyla, M. L. et al. Integrated multi-omics analysis of zinc-finger proteins uncovers roles in RNA regulation. Mol. Cell 84, 3826–3842 e3828 (2024).

    Google Scholar 

  25. Scobie, H. M., Rainey, G. J., Bradley, K. A. & Young, J. A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl. Acad. Sci. USA 100, 5170–5174 (2003).

    Google Scholar 

  26. Deuquet, J., Lausch, E., Superti-Furga, A. & van der Goot, F. G. The dark sides of capillary morphogenesis gene 2. EMBO J. 31, 3–13 (2012).

    Google Scholar 

  27. Burgi, J. et al. CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nat. Commun. 8, 15861 (2017).

    Google Scholar 

  28. Lacy, D. B., Wigelsworth, D. J., Melnyk, R. A., Harrison, S. C. & Collier, R. J. Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation. Proc. Natl. Acad. Sci. USA 101, 13147–13151 (2004).

    Google Scholar 

  29. Jiang, J., Pentelute, B. L., Collier, R. J. & Zhou, Z. H. Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521, 545–549 (2015).

    Google Scholar 

  30. Trstenjak, N. et al. Molecular mechanism of leukocidin GH-integrin CD11b/CD18 recognition and species specificity. Proc. Natl. Acad. Sci. USA 117, 317–327 (2020).

    Google Scholar 

  31. Baldari, C. T., Tonello, F., Paccani, S. R. & Montecucco, C. Anthrax toxins: A paradigm of bacterial immune suppression. Trends Immunol. 27, 434–440 (2006).

    Google Scholar 

  32. Moayeri, M., Haines, D., Young, H. A. & Leppla, S. H. Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J. Clin. Invest. 112, 670-682. (2003).

  33. Moayeri, M. & Leppla, S. H. The roles of anthrax toxin in pathogenesis. Curr. Opin. Microbiol 7, 19–24 (2004).

    Google Scholar 

  34. Agrawal, A. et al. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 424, 329–334 (2003).

    Google Scholar 

  35. Liu, S. et al. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc. Natl. Acad. Sci. USA 106, 12424–12429 (2009).

    Google Scholar 

  36. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. methods 11, 783–784 (2014).

    Google Scholar 

  37. Elegheert, J. et al. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 13, 2991–3017 (2018).

    Google Scholar 

  38. Grinkova, Y. V., Denisov, I. G. & Sligar, S. G. Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng. Des. Sel. 23, 843–848 (2010).

    Google Scholar 

  39. Ritchie, T. K. et al. Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).

    Google Scholar 

  40. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  41. Waskom, M. L. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

    Google Scholar 

  42. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  43. Scheres, S. H. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012).

    Google Scholar 

  44. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  45. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Google Scholar 

  46. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Google Scholar 

  47. Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature 628, 450–457 (2024).

    Google Scholar 

  48. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D. Struct. Biol. 75, 861–877 (2019).

    Google Scholar 

  49. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).

    Google Scholar 

  50. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph 14, 354–360 (1996).

    Google Scholar 

  51. joelmeyerson. hole-cmm, https://github.com/joelmeyerson/hole-cmm (2025).

  52. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Google Scholar 

  53. Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168–e168 (2014).

    Google Scholar 

Download references

Acknowledgements

We thank Prof. P. Plattet, University of Bern, for providing canine cell cultures. EM data were acquired on an instrument of the Dubochet Center for Imaging in Bern and supported by the Microscopy Imaging Center (MIC) of the University of Bern. We gratefully acknowledge Marek Kaminek and David Kalbermatter for their assistance with EM. We thank Sylvia Ho for providing the plasmids for protein expression in Expi293. This study was funded by a University of Bern ID Grant (H.P., B.Z.), SNSF grant 310030_212837 (H.P.), and SNSF sinergia grant 10000175 (B.Z., H.P.).

Author information

Author notes
  1. These authors contributed equally: Chang Wang, Filippo Cattalani, Ioan Iacovache.

  2. These authors jointly supervised this work: Horst Posthaus, Benoît Zuber.

Authors and Affiliations

  1. Institute of Anatomy, University of Bern, Bern, Switzerland

    Chang Wang, Ioan Iacovache & Benoît Zuber

  2. Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland

    Chang Wang, Filippo Cattalani, Faezeh Farhoosh & Jan Franzen

  3. Institute of Animal Pathology, Vetsuisse-Faculty, University of Bern, Bern, Switzerland

    Filippo Cattalani, Arunasalam Naguleswaran, Faezeh Farhoosh, Jan Franzen & Horst Posthaus

  4. Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland

    Laurence Abrami & F. Gisou van der Goot

Authors
  1. Chang Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Filippo Cattalani
    View author publications

    Search author on:PubMed Google Scholar

  3. Ioan Iacovache
    View author publications

    Search author on:PubMed Google Scholar

  4. Arunasalam Naguleswaran
    View author publications

    Search author on:PubMed Google Scholar

  5. Faezeh Farhoosh
    View author publications

    Search author on:PubMed Google Scholar

  6. Jan Franzen
    View author publications

    Search author on:PubMed Google Scholar

  7. Laurence Abrami
    View author publications

    Search author on:PubMed Google Scholar

  8. F. Gisou van der Goot
    View author publications

    Search author on:PubMed Google Scholar

  9. Horst Posthaus
    View author publications

    Search author on:PubMed Google Scholar

  10. Benoît Zuber
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.P. and B.Z. conceptualized the study, supervised the research, and secured funding. C.W., F.C., I.I., and A.N. designed and performed experiments and analyzed the data. F.F. and J.F. performed experiments. L.A. performed experiments under the supervision of F.G.v.d.G. F.C., I.I., and H.P. wrote the initial draft with input from C.W. F.C., I.I., H.P., and B.Z. substantially revised and refined the manuscript. All authors reviewed and approved the final version.

Corresponding authors

Correspondence to Horst Posthaus or Benoît Zuber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Cattalani, F., Iacovache, I. et al. Identification and structural characterization of anthrax toxin receptor 2 as the Clostridium perfringens NetF receptor. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69526-6

Download citation

  • Received: 07 July 2025

  • Accepted: 04 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69526-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology